首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure, electromechanical properties, and electrocaloric effect (ECE) in novel lead‐free (Bi0.5K0.5)TiO3‐La(Mg0.5Ti0.5)O3 ceramics were investigated. A morphotropic phase boundary (MPB) between the tetragonal and pseudocubic phase was found at x = 0.01‐0.02. In addition, the relaxor properties were enhanced with increasing the La(Mg0.5Ti0.5)O3 content. In situ high‐temperature X‐ray diffraction patterns and Raman spectra were characterized to elucidate the phase transition behavior. The enhanced ECE (ΔT = 1.19 K) and piezoelectric coefficient (d33 = 103 pC/N) were obtained for x = 0.01 at room temperature. Meanwhile, the temperature stability of the ECE was considered to be related to the high depolarization temperature and relaxor characteristics of the Bi0.5K0.5TiO3‐based ceramics. The above results suggest that the piezoelectric and ECE properties can be simultaneously enhanced by establishing an MPB. These results also demonstrate the great potential of the studied systems for solid‐state cooling applications and piezoelectric‐based devices.  相似文献   

2.
Dielectric properties of Na1/2Bi1/2Cu3Ti4O12 ceramics were evaluated over the temperature range 300‐720 K. Two relaxor‐like dielectric anomalies were found. The low‐temperature anomaly was confirmed to be an oxygen‐vacancy‐related relaxation process. It is a pseudo‐relaxor behavior caused by a bulk relaxation and a Maxwell‐Wagner relaxation. The high‐temperature one was evidenced to be an electric ferroelectric phase‐transition process resulting from the oxygen‐vacancy ordering.  相似文献   

3.
The (1?x)BaTiO3?xBi(Zn2/3Nb1/3)O3 (x=0.10‐0.25) ceramics were fabricated via solid‐state reactions. Temperature‐dependent polarization measurement reveals that with the temperature lowering, the remnant polarization increases till a maximum value before it decreases, showing a reentrant phenomenon. Absence of apparent switching current peaks in the current density as a function of electric field should indicate the lack of a ferroelectric transition, which is further verified by the consistent macroscopic phase structure from the Raman spectra. An anomalous peak in the full width at half maximum of a deconvoluted mode at ~515 cm?1 suggests the entering of a more disordered state of dipolar dynamics, which may be originated from the competition between the freezing of polar nanoregions and the random interacting fields.  相似文献   

4.
采用电子陶瓷法制备出(1-x)Bi1/2Na1/2TiO3-xBaTiO3(简写BNBT)无铅压电陶瓷,其中x=0.08,0.1,0.2,0.3,0.4。XRD分析结果表明所制备的样品都生成了纯的钙钛矿结构,并且都为四方相。同时利用电子探针显微镜(EPM)分析技术,研究了BNBT压电陶瓷的形貌。并通过测量样品的压电介电常数,发现所研究的样品的机械品质因数(Qm)在56-74之间,平面机电耦合系数(kp)在0.16左右,频率常数(NФ)在3000左右,并且随着x的增大相对介电常数εT33/ε0逐渐变小;介质损耗tanδ先减小后增大,当x=0.20时出现最小值tanδmin=0.03018;而压电常数d33则先增加后减小,在x=0.10时有最大值d33max=138。从综合性能来看,当x=0.20时性能最好,εT33/ε0=881,tanδ=0.03018,d33=115。  相似文献   

5.
Aiming to get the NBT-based lead-free ceramic with high strain and low strain hysteresis for practical actuator applications, a solid solution of complex-ion (Fe1/2Nb1/2)4+doped 0.75Na1/2Bi1/2TiO3-0.25SrTiO3 ((Na1/2Bi1/2)0.75Sr0.25Ti1-x(Fe1/2Nb1/2)xO3, abbreviated as NBST-100xFN) was designed and prepared, and its phase structure, micromorphology, ferroelectric, strain, dielectric and piezoelectric performances were systematically investigated. It was found that the incorporation of (Fe1/2Nb1/2)4+ causes a structure transition from the ferroelectric/relaxor (FE/RE) mixed phases to relaxor (RE) phase, increasing to a promising strain performance at x = 0.04 featured by not only a moderate strain value of 0.26%, corresponding normalized strain d33* of 371 pm/V, but also a very small strain hysteresis of 22%. In addition, the NBST-4FN ceramic sample also exhibits an unexceptionable frequency-dependence of unipolar strain. This study provides a new understanding and design idea for the practical actuator application of high strain NBT-based lead-free ceramics with ultra-low hysteresis.  相似文献   

6.
The (1?x)(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)?xBiMg2/3Nb1/3O3 (100xBMN) ternary solid solutions were designed and prepared using a conventional solid‐state reaction. Temperature and compositional dependent ferroelectric, piezoelectric, dielectric features, and structural evolution were systematically studied. At the critical composition of 2BMN, a large bipolar strain of 0.43% was achieved at 55 kV/cm, and the normalized strain reaches to 862 pm/V at a low driving electric field of 40 kV/cm. It was found that the substitution of BiMg2/3Nb1/3O3 induces a transformation from ferroelectric to relaxor phase by disrupting the long range ferroelectric order. Therefore, as the external electric field was applied, a relaxor‐ferroelectric phase transition will be induced. This is contributed to the giant strain. The results above suggest that such a ternary composition is a promising candidate for application to actuator.  相似文献   

7.
以熔盐法合成的片状SrTiO3晶粒为模板,利用模板晶粒生长(TGG)技术制备晶粒沿[001]方向为取向的0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3(简写为BNBT6)无铅压电陶瓷,采用X线衍射仪(XRD)、扫描电子显微镜(SEM)对陶瓷试样进行表征,采用透射电子显微镜(TEM)观察SrTiO3与BNBT6基体界面的微观结构.结果表明,BNBT6陶瓷晶粒定向生长过程分为2个阶段:首先是异质外延生长阶段,即在片状模板晶粒的诱导下,BNBT6基体粉体在SrTiO3模板晶粒表面外延生长,形成与模板取向完全一致的单晶生长层的过程;其次是同质外延生长阶段,即单晶生长层生成后吞噬BNBT6基体粉体逐步生长得到各向异性的高取向BNBT6陶瓷的过程.  相似文献   

8.
The piezoelectric and ferroelectric properties of 0.76(Bi0.5Na0.5)TiO3–0.04(Bi0.5Li0.5)TiO3–0.2(Bi0.5K0.5)TiO3 (abbreviated as 0.76BNT–0.04BLT–0.2BKT) ceramics were investigated to clarify the optimal sintering temperature, and the vibration characteristics were examined for a compression‐mode accelerometer assembly in which 0.76BNT–0.04BLT–0.2BKT ceramics sintered at the optimized temperature served as the piezoelectric elements. The increase in the grain size of the 0.76BNT–0.04BLT–0.2BKT ceramics with the sintering temperature provides a beneficial contribution to the piezoelectric coefficient; however, it detrimentally contributes to the depolarization temperature. The charge sensitivity of the prototype accelerometers was evaluated with changes in the seismic mass and the layer number of the piezoceramics. The deviation between the theoretical and measured values of charge sensitivity was less than 10%.  相似文献   

9.
To explore new relaxor‐PbTiO3 systems for high‐power and high‐temperature electromechanical applications, a ternary ferroelectric ceramic system of Pb(Lu1/2Nb1/2)O3–Pb(In1/2Nb1/2)O3–PbTiO3 (PLN–PIN–PT) have been investigated. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the as‐prepared PLN–PIN–PT ceramics near the morphotropic phase boundary (MPB) were characterized. A high rhombohedral‐tetragonal phase transition temperature TR‐T of 165°C and a high Curie temperature TC of 345°C, together with a good piezoelectric coefficient d33 of 420 pC/N, were obtained in 0.38PLN–0.20PIN–0.42PT ceramics. Furthermore, for (0.8?x)PLN–0.2PIN–xPT ceramics, the temperature‐dependent piezoelectric coefficients, coercive fields and electric‐field‐induced strains were further studied. At 175°C, their coercive fields were found to be above 9.5 kV/cm, which is higher than that of PMN–PT and soft P5H ceramics at room temperature, indicating PLN–PIN–PT ceramics to be one of the promising candidates in piezoelectric applications under high‐driven fields. The results presented here could benefit the development of relaxor‐PbTiO3 with enhanced phase transition temperatures and coercive fields.  相似文献   

10.
The (1?x)BaTiO3xBi(Zn2/3Nb1/3)O3 (x = 0.01–0.30) ceramics were synthesized by solid‐state reactions. The solubility limit was determined to be x = 0.20. A systematic structural transition from a tetragonal phase (x ≤ 0.034), to a mixture of tetragonal and rhombohedral phases (0.038 ≤ x ≤ 0.20), and finally to a pseudocubic phase (x ≥ 0.22) at room temperature was identified. Dielectric measurement revealed a ferroelectric (x ≤ 0.04) to relaxor (x ≥ 0.06) transition with permittivity peak broadening and flattening, which was further verified by Raman spectroscopy and differential scanning calorimetry (DSC). Activation energies obtained from the Vogel–Fulcher model displayed an increasing trend from ~0.03 eV for x ~ 0.05, to unusually high values (>0.20 eV) for the compositions with x ≥ 0.15. With the increase in Bi(Zn2/3Nb1/3)O3 content, the polarization hysteresis demonstrated a tendency from high nonlinearity to sublinearity coupled with the reduction in remnant polarization and coervice field. The deconvolution of the irreversible/reversible polarization contribution was enabled by first‐order reversal curve distributions, which indicates that the decreasing polarization nonlinearity with the increase in Bi(Zn2/3Nb1/3)O3 concentration could be related with the change from the ferroelectric domain and domain wall contributions to the weakly coupled relaxor behaviors.  相似文献   

11.
Lead‐free piezoceramics with the composition (1?x)(K1?yNay)NbO3‐x(Bi1/2Na1/2)ZrO3 (KNyN‐xBNZ) were prepared using a conventional solid‐state route. X‐ray diffraction, Raman spectroscopy, and dielectric measurements as a function of temperature indicated the coexistence of rhombohedral (R) and tetragonal (T) phase, typical of a morphotropic phase boundary (MPB) as the BNZ concentration increased and by adjusting the K/Na ratio. High remnant polarization (Pr=24 μC/cm2), piezoelectric coefficient (d33=320 pC/N), effective piezocoefficient ({d_{33}^*}=420 pm/V), coupling coefficient (kp=48%), and high strain (S=0.168%) were obtained at room temperature, but significant deterioration of Pr, {d_{33}^*}, and kp were observed by increasing from room temperature to 160°C (17.5 μC/cm2, 338 pm/V, and 32%, respectively) associated with a transition to a purely T phase. Despite these compositions showing promise for room‐temperature applications, the deterioration in properties as a function of increasing temperature poses challenges for device design and remains to be resolved.  相似文献   

12.
Electrocaloric device structures have been developed as multilayer ceramics (MLCs) based on fundamental research carried out on PMN‐8PT bulk ceramics. Two different MLC structures were prepared with nine layers each and layer thicknesses of 86 μm and 39 μm. The influence of the device design on its properties has been characterized by microstructural, dielectric, ferroelectric, and direct electrocaloric measurement. For direct characterization two different methods, ie temperature reading (thermistor and thermocouple) and heat flow measurement (differential scanning calorimetry), were used. A comparison of results revealed a highly satisfactory agreement between the different methods. This study confirms that MLCs are promising candidates for implementation into energy‐efficient electrocaloric cooling systems providing large refrigerant volume and high electrocaloric effect. Due to their micron‐sized active layers, they allow for the application of high electric fields under low operation voltages. We measured a maximum electrocaloric temperature change of ΔT=2.67 K under application/withdrawal of an electric field of ΔE=16 kV mm?1, which corresponds to operation voltages below 1.5 kV.  相似文献   

13.
To greatly enhance the mechanical quality factor (Qm) of piezoceramic materials, B2O3–CuO mixed oxides were added to a K0.48Na0.52NbO3‐based lead‐free piezoceramic (abbreviated as BC‐KNN). The results suggest that the B2O3–CuO additives effectively improved the sinterability and Qm value of the piezoceramic. An optimal Qm value as high as 2128 was obtained, which is 35 times higher than that of pure KNN ceramic. Interestingly, we found that the Qm value was sensitive to humidity of the surrounding environment. As the relative humidity (RH) increased from 25% RH to 78% RH, the Qm value of the BC‐KNN ceramics decreased from 2128 to 267. We found that the dependence of the Qm value on humidity was closely related to the instability of the relative dielectric constant (?r). Our results show that a dense microstructure is critical for maintaining a stable high Qm performance in a humid environment.  相似文献   

14.
(100)C‐oriented Na0.5Bi0.5‐xSmxTiO3 (NBST) lead‐free ferroelectric thin films were prepared on Pt/Ti/SiO2/Si substrates by chemical solution deposition method, and their microstructural, dielectric, ferroelectric, and photoluminescent properties were studied. X‐ray diffraction and scanning electron microscopy analysis indicated that both the grain size and (100)C orientation degree of NBST thin films were decreased by doping Sm3+ ions. Raman spectra showed that structural symmetry of NBST thin films decreased at low Sm3+ doping concentration and then increased at high doping concentration of Sm3+ ions. An appropriate amount of Sm3+ dopants was confirmed to enhance dielectric and ferroelectric properties of the NBST thin films. Among all the compositions, the Na0.5Bi0.492Sm0.008TiO3 thin film exhibited the largest remnant polarization (2Pr) of 27.3 μC/cm2 and high dielectric constant of 1068, as well as a low dielectric loss of 0.04. Temperature‐ and frequency‐dependent dielectric characteristics illustrated the relaxor ferroelectric behavior of Na0.5Bi0.492Sm0.008TiO3 thin film. Meanwhile, the Na0.5Bi0.492Sm0.008TiO3 thin film also showed optimal orange‐red emission at 600 nm, which is originating from the 4G5/24H7/2 transition of Sm3+ ions.  相似文献   

15.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

16.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

17.
Lead‐free 0.99[(1?x)Bi0.5(Na0.80K0.20)0.5TiO3?xBiFeO3]–0.01Ta (BNKT20–100xBF–1Ta) lead‐free piezoelectric ceramics were fabricated through conventional solid state sintering method. Results showed that change of BF content in the BNKT20–100xBF–1Ta induced a phase transition from ferroelectric to ergodic relaxor phase with a significant disruption of the long‐range ferroelectric order. A large electric‐field‐induced strain of 0.36% (at 80 kV/cm driving field, corresponding to a large signal of ~450 pm/V) which is derived from a reversible field‐induced ergodic relaxor to ferroelectric phase transformation, was obtained in the composition with x=0.01 near the ferroelectric‐ergodic relaxor phase boundary. Moreover, an attractive property for application in nonlinear actuators demanding enhanced thermal stability was obtained in this material, which showed a temperature‐insensitive strain characteristic in the temperature range from room temperature to 100°C.  相似文献   

18.
(Bi0.5Na0.5)TiO3–BiAlO3 lead‐free materials exhibit excellent ferroelectric properties, but its depolarization temperature is relatively low which is the major obstacle limiting the material's practical application. In this study, the effects of Manganese (Mn) modification on the microstructure, ferroelectric properties and depolarization behavior of 0.96(Bi0.5Na0.5)(Ti1?xMnx)O3–0.04BiAlO3 ceramics were investigated. It was found that the average grain size was enlarged and ferroelectric properties were enhanced with small Mn addition, meanwhile the tangent loss decreased. The remnant polarization (Pr) of the samples reached an optimal value (~41 μC/cm2) as Mn content increased up to 0.7 mol%, whereas further addition resulted in the decrease in Pr. Moreover, appropriate Mn addition (x=0.7%) can improve the depolarization temperature from 140°C to 161°C determined from thermally stimulated depolarization currents measurement.  相似文献   

19.
Bi0.5(Na1−xyKxAgy)0.5TiO3 piezoelectric ceramics were prepared by conventional ceramic processes. X-ray diffraction patterns show a pure perovskite structure, indicating that the K+ and Ag+ ions substitute for the Na+ ions in Bi0.5Na0.5TiO3. The temperature dependence of the dielectric constant and dissipation factor shows all ceramics to experience two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric. The transition temperature from ferroelectric to anti-ferroelectric and the temperature at which the dielectric constant reaches its maximum value decrease with the increase of K+ amount. At room temperature, the ceramics containing 17.5–20 mol% K+ and 2 mol% Ag+ exhibit high piezoelectric constant (d33 = 180 pC/N) and high electromechanical coupling factor (kp = 35%).  相似文献   

20.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号