首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A MALDI QqTOF mass spectrometer has been used to identify proteins separated by one-dimensional or two-dimensional gel electrophoresis at the femtomole level. The high mass resolution and the high mass accuracy of this instrument in both MS and MS/MS modes allow identification of a protein either by peptide mass fingerprinting of the protein digest or from tandem mass spectra acquired by collision-induced dissociation of individual peptide precursors. A peptide mass map of the digest and tandem mass spectra of multiple peptide precursor ions can be acquired from the same sample in the course of a single experiment. Database searching and acquisition of MS and MS/MS spectra can be combined in an interactive fashion, increasing the information value of the analytical data. The approach has demonstrated its usefulness in the comprehensive characterization of protein in-gel digests, in the dissection of complex protein mixtures, and in sequencing of a low molecular weight integral membrane protein. Proteins can be identified in all types of sequence databases, including an EST database. Thus, MALDI QqTOF mass spectrometry promises to have remarkable potential for advancing proteomic research.  相似文献   

2.
Tandem mass spectrometry in combination with liquid chromatography has emerged as a powerful tool for characterization of complex protein mixtures in a high-throughput manner. One of the bioinformatics challenges posed by the mass spectral data analysis is the determination of precursor charge when unit mass resolution is used for detecting fragment ions. The charge-state information is used to filter database sequences before they are correlated to experimental data. In the absence of the accurate charge state, several charge states are assumed. This dramatically increases database search times. To address this problem, we have developed an approach for charge-state determination of peptides from their tandem mass spectra obtained in fragmentations via electron-transfer dissociation (ETD) reactions. Protein analysis by ETD is thought to enhance the range of amino acid sequences that can be analyzed by mass spectrometry-based proteomics. One example is the improved capability to characterize phosphorylated peptides. Our approach to charge-state determination uses a combination of signal processing and statistical machine learning. The signal processing employs correlation and convolution analyses to determine precursor masses and charge states of peptides. We discuss applicability of these methods to spectra of different charge states. We note that in our applications correlation analysis outperforms the convolution in determining peptide charge states. The correlation analysis is best suited for spectra with prevalence of complementary ions. It is highly specific but is dependent on quality of spectra. The linear discriminant analysis (LDA) approach uses a number of other spectral features to predict charge states. We train LDA classifier on a set of manually curated spectral data from a mixture of proteins of known identity. There are over 5000 spectra in the training set. A number of features, pertinent to spectra of peptides obtained via ETD reactions, have been used in the training. The loading coefficients of LDA indicate the relative importance of different features for charge-state determination. We have applied our model to a test data set generated from a mixture of 49 proteins. We search the spectra with and without use of the charge-state determination. The charge-state determination helps to significantly save the database search times. We discuss the cost associated with the possible misclassification of charge states.  相似文献   

3.
Algorithmic search engines bridge the gap between large tandem mass spectrometry data sets and the identification of proteins associated with biological samples. Improvements in these tools can greatly enhance biological discovery. We present a new scoring scheme for comparing tandem mass spectra with a protein sequence database. The MASPIC (Multinomial Algorithm for Spectral Profile-based Intensity Comparison) scorer converts an experimental tandem mass spectrum into a m/z profile of probability and then scores peak lists from potential candidate peptides using a multinomial distribution model. The MASPIC scoring scheme incorporates intensity, spectral peak density variations, and m/z error distribution associated with peak matches into a multinomial distribution. The scoring scheme was validated on two standard protein mixtures and an additional set of spectra collected on a complex ribosomal protein mixture from Rhodopseudomonas palustris. The results indicate a 5-15% improvement over Sequest for high-confidence identifications. The performance gap grows as sequence database size increases. Additional tests on spectra from proteinase-K digest data showed similar performance improvements demonstrating the advantages in using MASPIC for studying proteins digested with less specific proteases. All these investigations show MASPIC to be a versatile and reliable system for peptide tandem mass spectral identification.  相似文献   

4.
We have developed an approach to identify the molecular weight of a peptide ion directly from its corresponding tandem mass spectrum using a cross-correlation function. We have shown that the monoisotopic molecular weight can be calculated for approximately 90% of tandem mass spectra identified from tryptic digests of complex protein mixtures. The accuracy of the calculated monoisotopic masses was dependent on the resolution and mass accuracy of the spectra analyzed, but was typically <0.25 amu for linear ion trap mass spectra. The ability to calculate accurate monoisotopic molecular weights for low-resolution ion trap data should significantly improve both the speed and performance of database searches for which typical mass accuracies of approximately 3 amu are employed. In addition, this strategy can also be used to identify the precursor ion for tandem mass spectra acquired using large ion selection windows in data-independent collision-activated dissociation and has the potential to identify multiplexed tandem mass spectra.  相似文献   

5.
Hu A  Chen CT  Tsai PJ  Ho YP 《Analytical chemistry》2006,78(14):5124-5133
Analysis of microbial mixtures in complex systems, such as clinical samples, using mass spectrometry can be challenging because the specimens may contain mixtures of several pathogens or both pathogens and nonpathogens. We have successfully applied capillary electrophoresis-selective MS/MS of unique peptide marker ions to the identification of common pathogens in clinical diagnosis. We searched the CE-MS/MS spectra acquired from the proteolytic digests of pure bacterial cell extracts against protein databases. The identified peptides that matched a protein associated with a particular pathogen were selected as marker ions to identify that bacterium in clinical specimens. Thirty-four clinical specimens, obtained from pus, wound, sputum, and urine samples, were analyzed using both biochemical and selective MS/MS methods. The bacteria in these clinical samples were cultivated directly, without prior isolation of a pure colony, before performing the selective MS/MS analyses. The bacteria analyzed included both Gram-positive and -negative strains. The match with respect to the pathogens identified was good between the biochemical and the selective MS/MS methods; the matching rate was 91%. The rate was as high as 97% when not considering two specimens for which the bacteria were not grown successfully. Two of the specimens that we identified using the biochemical method as containing two bacterial species were confirmed also through selective tandem MS analysis.  相似文献   

6.
Roussis SG 《Analytical chemistry》2001,73(15):3611-3623
The automated acquisition of the product ion spectra of all precursor ions in a selected mass range by using a magnetic sector/orthogonal acceleration time-of-flight (oa-TOF) tandem mass spectrometer for the characterization of complex petroleum mixtures is reported. Product ion spectra are obtained by rapid oa-TOF data acquisition and simultaneous scanning of the magnet. An analog signal generator is used for the scanning of the magnet. Slow magnet scanning rates permit the accurate profiling of precursor ion peaks and the acquisition of product ion spectra for all isobaric ion species. The ability of the instrument to perform both high- and low-energy collisional activation experiments provides access to a large number of dissociation pathways useful for the characterization of precursor ions. Examples are given that illustrate the capability of the method for the characterization of representative petroleum mixtures. The structural information obtained by the automated MS/MS experiment is used in combination with high-resolution accurate mass measurement results to characterize unknown components in a polar extract of a refinery product. The exhaustive mapping of all precursor ions in representative naphtha and middle-distillate fractions is presented. Sets of isobaric ion species are separated and their structures are identified by interpretation from first principles or by comparison with standard 70-eV EI libraries of spectra. The utility of the method increases with the complexity of the samples.  相似文献   

7.
Gu S  Pan S  Bradbury EM  Chen X 《Analytical chemistry》2002,74(22):5774-5785
Here, we describe a method for protein identification and de novo peptide sequencing. Through in vivo cell culturing, the deuterium-labeled lysine residue (Lys-d4) introduces a 4-Da mass tag at the carboxyl terminus of proteolytic peptides when cleaved by certain proteases. The 4-Da mass difference between the unlabeled and the deuterated lysine assigns a mass signature to all lysine-containing peptides in any pool of proteolytic peptides for protein identification directly through peptide mass mapping. Furthermore, it was used to distinguish between N- and C-terminal fragments for accurate assignments of daughter ions in tandem MS/MS spectra for sequence assignment. This technique simplifies the labeling scheme and the interpretation of the MS/MS spectra by assigning different series of fragment ions correctly and easily and is very useful in de novo peptide sequencing. We have also successfully implemented this approach to the analysis of protein mixtures derived from the human proteome.  相似文献   

8.
In this paper, we present an intensity-based probability function to identify peptides from tandem mass spectra and amino acid sequence databases. The function is an approximation to the central limiting theorem, and it explicitly depends on the cumulative product ion intensities, number of product ions of a peptide, and expectation value of the cumulative intensity. We compare the results of database searches using the new scoring function and scoring functions from earlier algorithms, which implement hypergeometric probability, Poisson's model, and cross-correlation scores. For a standard protein mixture (tandem mass spectra generated from the mixture of five known proteins), we generate receiver operating curves with all scoring schemes. The receiver operating curves show that the shared peaks count-based probability methods (like Poisson and hypergeometric models) are the most specific for matching high-quality tandem mass spectra. The intensity-based (central limit model) and intensity-modeled (cross-correlation) methods are more sensitive when matching low-quality tandem mass spectra, where the number of shared peaks is insufficient to correctly identify a peptide. Cross-correlation methods show a small advantage over the intensity-based probability method.  相似文献   

9.
We present a new probability-based method for protein identification using tandem mass spectra and protein databases. The method employs a hypergeometric distribution to model frequencies of matches between fragment ions predicted for peptide sequences with a specific (M + H)+ value (at some mass tolerance) in a protein sequence database and an experimental tandem mass spectrum. The hypergeometric distribution constitutes null hypothesis-all peptide matches to a tandem mass spectrum are random. It is used to generate a score characterizing the randomness of a database sequence match to an experimental tandem mass spectrum and to determine the level of significance of the null hypothesis. For each tandem mass spectrum and database search, a peptide is identified that has the least probability of being a random match to the spectrum and the corresponding level of significance of the null hypothesis is determined. To check the validity of the hypergeometric model in describing fragment ion matches, we used chi2 test. The distribution of frequencies and corresponding hypergeometric probabilities are generated for each tandem mass spectrum. No proteolytic cleavage specificity is used to create the peptide sequences from the database. We do not use any empirical probabilities in this method. The scores generated by the hypergeometric model do not have a significant molecular weight bias and are reasonably independent of database size. The approach has been implemented in a database search algorithm, PEP_PROBE. By using a large set of tandem mass spectra derived from a set of peptides created by digestion of a collection of known proteins using four different proteases, a false positive rate of 5% is demonstrated.  相似文献   

10.
We report a new tandem mass spectrometric approach for the improved identification of polypeptides from mixtures (e.g., using genomic databases). The approach involves the dissociation of several species simultaneously in a single experiment and provides both increased speed and sensitivity. The data analysis makes use of the known fragmentation pathways for polypeptides and highly accurate mass measurements for both the set of parent polypeptides and their fragments. The accurate mass information makes it possible to attribute most fragments to a specific parent species. We provide an initial demonstration of this multiplexed tandem MS approach using an FTICR mass spectrometer with a mixture of seven polypeptides dissociated using infrared irradiation from a CO2 laser. The peptides were added to, and then successfully identified from, the largest genomic database yet available (C. elegans), which is equivalent in complexity to that for a specific differentiated mammalian cell type. Additionally, since only a few enzymatic fragments are necessary to unambiguously identify a protein from an appropriate database, it is anticipated that the multiplexed MS/MS method will allow the more rapid identification of complex protein mixtures with on-line separation of their enzymatically produced polypeptides.  相似文献   

11.
A 2D ion trap has a greater ion trapping efficiency, greater ion capacity before observing space-charging effects, and a faster ion ejection rate than a traditional 3D ion trap mass spectrometer. These hardware improvements should result in a significant increase in protein identifications from complex mixtures analyzed using shotgun proteomics. In this study, we compare the quality and quantity of peptide identifications using data-dependent acquisition of tandem mass spectra of peptides between two commercially available ion trap mass spectrometers (an LTQ and an LCQ XP Max). We demonstrate that the increased trapping efficiency, increased ion capacity, and faster ion ejection rate of the LTQ results in greater than 5-fold more protein identifications, better identification of low-abundance proteins, and higher confidence protein identifications when compared with a LCQ XP Max.  相似文献   

12.
Data-dependent acquisition of MS/MS spectra from lipid precursors enables to emulate the simultaneous acquisition of an unlimited number of precursor and neutral loss scans in a single analysis. This approach takes full advantage of rich fragment patterns in tandem mass spectra of lipids and enables their profiling by complex (Boolean) scans, in which masses of several fragment ions are considered within a single logical framework. No separation of lipids is required, and the accuracy of identification and quantification is not compromised, compared to conventional precursor and neutral loss scanning.  相似文献   

13.
Tabb DL  Saraf A  Yates JR 《Analytical chemistry》2003,75(23):6415-6421
Shotgun proteomics is a powerful tool for identifying the protein content of complex mixtures via liquid chromatography and tandem mass spectrometry. The most widely used class of algorithms for analyzing mass spectra of peptides has been database search software such as SEQUEST. A new sequence tag database search algorithm, called GutenTag, makes it possible to identify peptides with unknown posttranslational modifications or sequence variations. This software automates the process of inferring partial sequence "tags" directly from the spectrum and efficiently examines a sequence database for peptides that match these tags. When multiple candidate sequences result from the database search, the software evaluates which is the best match by a rapid examination of spectral fragment ions. We compare GutenTag's accuracy to that of SEQUEST on a defined protein mixture, showing that both modified and unmodified peptides can be successfully identified by this approach. GutenTag analyzed 33,000 spectra from a human lens sample, identifying peptides that were missed in prior SEQUEST analysis due to sequence polymorphisms and posttranslational modifications. The software is available under license; visit http://fields.scripps.edu for information.  相似文献   

14.
We have evaluated the use of free-flow electrophoresis, an emerging separation method for preparative isoelectric focusing of complex peptide mixtures, as a tool for high-throughput tandem mass spectrometry-based proteomic analysis. In this study, we investigated the ability of free-flow electrophoresis to resolve and fractionate complex peptide mixtures and also the effectiveness of using peptide isoelectric point in conjunction with peptide match probability scoring in sequence database searching. As a model system for this study, we analyzed a chromatin-enriched fraction from the yeast Saccharomyces cerevisiae. This mixture was fractionated using preparative isoelectric focusing by free-flow electrophoresis, followed by online capillary liquid chromatography electrospray tandem mass spectrometry and sequence database searching. Our results demonstrate that (1) FFE effectively resolves and fractionates complex peptide mixtures on the basis of peptide isoelectric point and (2) the introduction of peptide pI is effective in minimizing both false positive and false negative sequence matches in sequence database searching of tandem mass spectrometry data.  相似文献   

15.
We report the direct introduction of biological samples into a high-resolution mass spectrometer, the LTQ-Orbitrap, as a fast tool for metabolomic studies. A proof of concept study was performed on yeast cell extracts that were introduced into the mass spectrometer by using flow injection analysis, with an acquisition time of 3 min. Typical mass spectra contained a few thousand m/z signals, 400 of which were found to be analytically relevant (i.e., their intensity was 3-fold higher than that of the background noise and they occurred in at least 60% of the acquisition profiles under identical experimental conditions). The method was validated by studies of the matrix effect, linearity, and intra-assay precision. Accurate mass measurements in the Orbitrap discriminated between isobaric ions and also indicated the elemental composition of the ions of interest with mass errors below 5 ppm, for identification purposes. The proposed structures were then assessed by MSn experiments via the linear ion trap, together with accurate mass determination of the product ions in the Orbitrap analyzer. When applied to the study of cadmium toxicity, the method was as effective as that initially developed by using LC/ESI-MS/MS for a targeted approach. The same metabolic fingerprints were also subjected to multivariate statistical analyses. The results highlighted a reorganization of amino acid metabolism under cadmium conditions in order to increase the biosynthesis of glutathione.  相似文献   

16.
Proteomics experiments on complex mixtures have benefited greatly from the advent of fast-scanning ion trap mass spectrometers. However, the complexity and dynamic range of mixtures analyzed using shotgun proteomics is still beyond what can be sampled by data-dependent acquisition. Furthermore, the total liquid chromatography-mass spectrometry (LC-MS) peak capacity is not sufficient to resolve the precursors within these mixtures, let alone acquire tandem mass spectra on all of them. Here we describe the application of a high-field asymmetric waveform ion mobility spectrometry (FAIMS) device as an interface to an ion trap mass spectrometer. The dynamic range and peak capacity of the nanoflow LC-FAIMS-MS analysis was assessed using a complex tryptic digest of S. cerevisiae proteins. By adding this relatively simple device to the front of the mass spectrometer, we obtain an increase in peak capacity >8-fold and an increase in dynamic range of >5-fold, without increasing the length of the LC-MS analysis. Thus, the addition of FAIMS to the front of a table-top mass spectrometer can obtain the peak capacity of multidimensional protein identification technology (MudPIT) while increasing the throughput by a factor of 12.  相似文献   

17.
Performance of a linear ion trap-Orbitrap hybrid for peptide analysis   总被引:1,自引:0,他引:1  
Proteomic analysis of digested complex protein mixtures has become a useful strategy to identify proteins involved in biological processes. We have evaluated the use of a new mass spectrometer that combines a linear ion trap and an Orbitrap to create a hybrid tandem mass spectrometer. A digested submandibular/sublingual saliva sample was used for the analysis. We find the instrument is capable of mass resolution in excess of 40,000 and mass measurement accuracies of less than 2 ppm for the analysis of complex peptide mixtures. Such high mass accuracy allowed the elimination of virtually any false positive peptide identifications, suggesting that peptides that do not match the specificity of the protease used in the digestion of the sample should not automatically be considered as false positives. Tandem mass spectra from the linear ion trap and from the Orbitrap have very similar ion abundance ratios. We conclude this instrument will be well suited for shotgun proteomic types of analyses.  相似文献   

18.
Quantification of mixture components from their composite optical or mass spectra is a common need in analytical chemistry. We encountered the need when applying a combination of enzymatic digestion with nuclease P1 and tandem mass spectrometry to a mixture of isomeric photomodified oligodeoxynucleotides. In the procedure, we collisionally activated the [M - H]- or [M + Na - 2H]- ion of trinucleotide triphosphates, which were extricated enzymatically from the larger, damaged oligodeoxynucleotides, and we measured the relative abundances of characteristic fragment ions. The results sometimes yield curved calibrations for plots of the relative fragment ion abundances in the product ion spectra of isomers versus their relative amounts. We developed a normalized linear model, which brings understanding to the nonlinear plots and allows quantification of the mixture components from their composite spectra. The outcome demonstrates a general quantification procedure and shows that different yields for generating fragment ions from different constituents of the mixture cause the curved calibration lines.  相似文献   

19.
The modification of proteins by the cytotoxic, reactive aldehyde 4-hydroxynonenal (HNE) is known to alter protein function and impair cellular mechanisms. In order to identify susceptible amino acid sites of HNE modification within complex biological mixtures by microcapillary liquid chromatography and linear ion trap tandem mass spectrometry, we have developed a solid-phase capture and release strategy that utilizes reversible hydrazide chemistry to enrich HNE-modified peptides. To maximize the detection of fragment ions diagnostic of HNE modification, both neutral loss-dependent acquisition of MS/MS/MS spectra and the pulsed Q dissociation operation mode were employed. When the solid-phase hydrazide enrichment strategy was applied to a yeast lysate treated with HNE, 125 distinct amino acid sites of HNE modification were mapped on 67 different proteins. The endogenous susceptibility of many of these proteins to HNE modification was demonstrated by analyzing HNE-treated yeast cell cultures with a complementary biotin hydrazide enrichment strategy. Further analysis revealed that the majority of amino acid sites susceptible to HNE modification were histidine residues, with most of these sites being flanked by basic amino acid residues, and predicted to be solvent exposed. These results demonstrate the effectiveness of this novel strategy as a general platform for proteome-scale identification of amino acid sites susceptible to HNE modification from within complex mixtures.  相似文献   

20.
The use of photoionization at atmospheric pressure shows great potential for the mass analysis of large apolar or hydrophobic peptides. Mass spectra that were obtained using this technique showed mainly singly charged ions. While polar peptides spectra do not produce fragment ions, others lead to B-type or C-type in-source fragmentation. These dissociation reactions, which could involve electron capture dissociation processes in the case of the C-type ions, are observed for hydrophobic peptides. Both the compatibility of this ionization mode with reversed- or normal-phase liquid chromatographic separation and its sensitivity allow liquid chromatography coupling to both mass spectrometry and tandem mass spectrometry for the analyses of hydrophobic peptide mixtures. Atmospheric pressure photoionization seems to be an interesting alternative method to study hydrophobic peptides that are not easily ionizable by more classical ionization techniques such as electrospray ionization and matrix-assisted laser desorption/ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号