首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present investigation is related to the development of the welding procedure of the hybrid laser/arc welding (HLAW) in joining thick dissimilar materials. The HLAW was applied to join aluminum alloy (AA6061) to an advanced high strength steel (AHSS) where an explosively welded transition joint, TRICLAD®, was used as an intermediate structural insert between the thick plates of the aluminum alloy and AHSS. The welds were characterized by an optical microscope, scanning electron microscope (SEM), tensile test, charged coupled device (CCD) camera, and microhardness measurement. The groove angle was optimized for the welding process based on the allowed amount of heat input along the TRICLAD® interface generated by an explosive welding. The weld was fractured in the heat affected zone of the aluminum side in the tensile test. The microhardness was shown that the temperature variation caused minor softening in the heat affected zone satisfying the requirement that the width of the softened heat affected zone in the steel side falls within 15.9 mm far away from the weld centerline. The microstructure analysis showed the presence of tempered martensite at the vicinity of the weld area, which it was a cause of softening in the heat affected zone.  相似文献   

2.
The study of the interface of ceramic/metal alloy friction welded components is essential for understanding of the quality of bonding between two dissimilar materials. In the present study, optical and electron microscopy as well as four-point bending strength and microhardness measurements were used to evaluate the quality of bonding of alumina and 6061 aluminum alloy joints produced by friction welding. The joints were also examined with EDX (energy dispersive X-ray) in order to determine the phases formed during welding. The bonded alumina-6061 aluminum samples were produced by varying the rotational speed but keeping constant the friction pressure and friction time. The experimental results showed that the effect of rotation speed and degree of deformation appears to be high on the 6061 Al alloy than on the alumina part. It is discovered that the weld interface formed included three different regions: unaffected zone (UZ), deformed zone (DZ), as well as transformed and recrystallized fully deformed zone (FPDZ). Therefore, when rotational speed increases, the thickness of full plastic deformed zone (FPDZ) at the interface increases as a result of more mass discarded from the welding interface. It was also observed that rotational speed of 2500 rpm can produce a very good joint and microhardness with good microstructure as compared to the other experimental rotational speeds.  相似文献   

3.
Self-reacting friction stir welding (SR-FSW), also called bobbin-tool friction stir welding (BT-FSW), is a solid state welding process similar to friction stir welding (FSW) except that the tool has two opposing shoulders instead of the shoulder and a backing plate found in FSW. The tool configuration results in greater heat input and a symmetrical weld macrostructure. A significant amount of information has been published in the literature concerning traditional FSW while little has been published about SR-FSW. An optimization experiment was performed using a factorial design to evaluate the effect of process parameters on the weld temperature, surface and internal quality, and mechanical properties of self-reacting friction stir welded aluminum alloy 6061-T6 butt joints. The parameters evaluated were tool rotational speed, traverse speed, and tool plunge force. A correlation between weld temperature, defect formation (specifically galling and void formation), and mechanical properties was found. Optimum parameters were determined for the welding of 8-mm-thick 6061-T6 plate.  相似文献   

4.
Cast aluminum alloy, AC4CH-T6, and wrought aluminum alloy, A6061-T6, were joined by means of friction stir welding (FSW) technique. The effect of microstructure and post heat treatment on fatigue behavior of the dissimilar joints was investigated. Near the weld centre, Vickers hardness was lower than in the parent metals and the hardness minima were observed along the trace route of FSW tool’s shoulder edge. Tensile fracture took place on A6061 side where the hardness was minimal, resulting in the lower static strength of the dissimilar joints than AC4CH or A6061. Fatigue fracture occurred on AC4CH side due to casting defects and the fatigue strength of the dissimilar joints was similar to that of AC4CH, but lower than that of A6061. Friction stir process (FSP) and post heat treatment successfully improved the fatigue strength of the dissimilar joints up to that of the parent metal, A6061. __________ Translated from Problemy Prochnosti, No. 1, pp. 150–154, January–February, 2008.  相似文献   

5.
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000–1400 rpm and traversing speed of 80–240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al–Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (∼98% of that of 6061 alloy), which is also maximum with respect to others.  相似文献   

6.
为研究铝合金中厚板-节点套接头在多层多道焊后的残余应力和变形分布,本文基于ABAQUS软件建立了该接头三维有限元模型,采用双椭球热源、生死单元法以及顺序耦合法,对6061-T6铝合金中厚板-节点套多层多道焊进行数值模拟,并分析了接头的温度场,以及在夹具约束下的焊接残余应力及变形的分布情况。研究结果表明:数值模拟与实际接头的熔池形状吻合度较高;摆动焊接过程中温度曲线呈多峰结构;焊件的升温速率明显大于冷却速率,且冷却速率随时间逐渐减小;焊接残余应力主要集中在焊缝及夹具区域,且小于6061-T6铝合金在室温下的屈服强度;接头的最大横向残余应力为129.9 MPa,中厚板上的横向残余应力大于节点套上的横向残余应力;接头的最大纵向残余应力为132.9 MPa,沿焊接方向,焊缝处的纵向残余应力呈山峰状分布;该接头在Y轴方向上的变形最大,为1.494 mm,该接头的最终变形结果为上凸变形。  相似文献   

7.
6061-T6 铝合金激光焊接接头腐蚀疲劳裂纹扩展   总被引:1,自引:0,他引:1       下载免费PDF全文
目的研究6061-T6铝合金激光焊接接头的腐蚀疲劳裂纹扩展特性,并分析裂纹扩展的影响因素。方法利用光纤激光器,焊接尺寸为150 mm×100 mm×4 mm(焊接方向、横向、熔深方向)的6061-T6铝合金,采用SE(B)三点弯曲疲劳裂纹扩展试验并利用连续降K法,分别在空气和人工海水中进行疲劳裂纹扩展试验,通过使用金相显微镜(OE)和扫描电子显微镜(SEM),对金相结构进行观测分析。结果同样工艺参数的焊接接头,在海水中疲劳裂纹门槛值(4.063 016 MPa·m~(0.5))大于空气中的门槛值(3.479 166 MPa·m~(0.5));在疲劳裂纹扩展中速区(da/dN10~(-5) mm/cycle)时,海水焊接接头疲劳裂纹扩展速率大于空气中的,低速区(da/d N10~(-5) mm/cycle)则小于在空气中的。结论成形良好的焊缝、晶粒细小的焊缝组织有助于接头疲劳裂纹扩展性能的提高;中速区,海水中疲劳裂纹扩展速率偏大,主要是由腐蚀条件下焊缝裂纹尖端阳极溶解和交变载荷共同作用导致;低速区,海水中疲劳裂纹扩展速率偏小,主要原因是腐蚀产物堆积于疲劳裂纹扩展尖端,产生较强裂纹闭合效应。  相似文献   

8.
Thin sheets of aluminum alloy 6061-T6 and one type of Advanced high strength steel, transformation induced plasticity (TRIP) steel have been successfully butt joined using friction stir welding (FSW) technique. The maximum ultimate tensile strength can reach 85% of the base aluminum alloy. Intermetallic compound (IMC) layer of FeAl or Fe3Al with thickness of less than 1 μm was formed at the Al–Fe interface in the advancing side, which can actually contribute to the joint strength. Tensile tests and scanning electron microscopy (SEM) results indicate that the weld nugget can be considered as aluminum matrix composite, which is enhanced by dispersed sheared-off steel fragments encompassed by a thin intermetallic layer or simply intermetallic particles. Effects of process parameters on the joint microstructure evolution were analyzed based on mechanical welding force and temperature that have been measured during the welding process.  相似文献   

9.
Aluminum alloys of grade 6xxx and 5xxx are used where strength and corrosion resistance both are important. This paper reports the GMA welding of dissimilar 6061 T6 and 5083 O aluminum alloys and comparison of mechanical properties and fracture behavior of dissimilar joints (6061 T6-5083 O) with similar joints of the two base materials (6061 T6-6061 T6 and 5083 O-5083 O). GMA welding is used mostly due to high deposition rate, deeper penetration and high welding speed. The fusion welding of dissimilar aluminum alloys faces many problems due to the different chemical compositions and thermal conductivities of aluminum alloys. The dissimilar joint exhibited an average tensile strength of 138 MPa and weld hardness of 74.2 VHN. The scanning electron micrograph of tensile fracture surface was obtained to investigate the mode of failure. The fractograph at top portion of the fractured surface of 6061 T6-6061 T6 joints exhibited smaller grain size and smaller spacing between grains. The fractograph at middle portion showed population of dimples, which is the indication of ductile type of fracture. The fractograph at bottom portion (root region) indicated relatively smaller cleavage facets in similar joint of 5083 O-5083 O.  相似文献   

10.
The present investigation aims to contrast the effect of the commonly used thermal frequency on welding process suitability, weld profile, weld macrostructure, and weld hardness on AA6061 aluminum alloy double pulsed gas metal arc welding. Material manufacturing processes and welding parameters with thermal frequencies of 2, 3, and 4 Hz are described in detail. Three defect-free welds were successfully formed at these thermal frequencies. The results indicate the following: (1) thermal frequency has no effect on welding process suitability when the welding parameters are self-matching; and (2) at increased thermal frequency, weld ripple distance reduces, maximum penetration depth decreases, grain size of the fusion zone decreases, and fusion zone hardness increases.  相似文献   

11.
We have evaluated the characteristics of anodic coatings on 6061 aluminum alloy. We grew these coatings using a high voltage (950 V) low current density (1–2 mA cm-2) high resistivity (45–75 kΩ cm) process in an electrolyte consisting of a solution of ammonium tartrate in ethanol. Coating properties which we subsequently characterized include thickness, density, morphology, entrained and adsorbed impurities, dielectric constant, breakdown strength and leakage curent. A comparison of the coatings on 6061 aluminum alloy with coatings grown using similar conditions on commercially pure 1100 aluminum alloy indicates that the alloying components in 6061 aluminum affect subsequent coating morphology and dielectric properties. The coatings displayed useful dielectric properties. The fact that these coatings were grown on 6061 aluminum alloy, which is a common industrial alloy used because of its relatively high strength and machinability, may recommend these coatings for a variety of practical applications.  相似文献   

12.
Introducing the aluminum alloy into the steel body structure allows the reduction in the vehicle weight and improves the fuel efficiency. However, it is a still great challenge to weld aluminum alloy to steel due to their differences in the physical, mechanical and metallurgical properties. In this study, aluminum alloy 6061-T6 was welded with zinc coated low carbon steel by cold metal transfer (CMT). Effects of the pre-setting gap at the interface of aluminum alloy sheet and steel sheet as well as the offset distance of the electrode torch from the aluminum alloy sheet edge on the weld qualities were investigated. The tensile shear tests were carried out to evaluate the mechanical property of the welds. In addition, optical micrograph, scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS) were used to analyze the weld microstructure. Experimental results indicated that the intermetallic layer thickness in the CMT welds was well controlled below the 10 μm, which facilitates the achievement of relatively high weld strength. Furthermore, a pre-setting gap and an appropriate post-weld heat treatment can improve the weld strength. However, the weld strength was decreased by increasing the offset distance of arc torch. In addition, the pre-setting gap also affects the intermetallic layer morphology. The formation of brittle AlxFey could be suppressed by the presence of the remained zinc in the steel side.  相似文献   

13.
A modified three-dimensional model was established to simulate the friction stir welding of the 6061-T6 aluminum alloy. A detailed calculating method of the heat generation was proposed by taking account of the contact conditions between the tool and the work-piece. The results show that the heat mainly generated within the region close to the shoulder, the high temperature exists within the upper portion of the weld and decreases along the thickness direction. The strong material flow mainly occurs within the region around the tool and the material ahead of the tool sweeps toward the RS and finally deposits behind the tool. During this procedure the material is extruded to experience different shear orientations, and a defect-prone region exists in the region where material flow is weak. The temperature field and material flow behaviors predicted by the simulation method are in good agreement with the results obtained by the experiments.  相似文献   

14.
Magnetic pulse welding is a solid state impact welding process, similar to explosive welding, which produces metallurgical bond by oblique high-speed impact between two metal bodies. This violent impact removes the metal surface oxide layers and then joins the two atomic level clean metal surfaces together by the incidental compression pressure. The impact velocity is at 200–400 m/s and the being welded metal surface undergoes severe plastic deformation with strain rate in the order of 106–107 s−1. The ultrafine-grained structure was observed on the welded interface. This article studied two types of similar material lap joint interfaces and the base metals were aluminum alloy 6061 and copper alloy 110. Nano-indentation testing shows that the welded interfaces have significantly greater hardness than the base metals. The interface microstructure was studied by optical microscopy, electron backscatter diffraction microscopy, and transmission electron microscopy. The welded aluminum alloy 6061 interface exhibits extremely fine grains and an extremely high dislocation density. The impact welded copper alloy 110 interface presents nano-scale lamellar band structure and deformation twins. The interface hardness increasing was attributed to this impact-induced microstructural refinement.  相似文献   

15.
In this paper, the effects of post‐weld heat treatment on modification of microstructures and mechanical properties of friction stir welded and gas metal arc welded AA6061‐O plates were compared with each other. Gas metal arc welding and friction stir welding were used as the applicable welding processes for AA6061‐O alloys. The applied post‐weld heat treatment consisted of solution heat treatment, followed by water quenching and finally artificial aging. The samples were classified as post‐weld heat treated and as‐welded joints. The microstructural evolution, tensile properties, hardness features and fracture surfaces of both as‐welded and post‐weld heat treated samples were reported. The results clearly showed that friction stir welding process demonstrated better and more consistent mechanical properties by comparison with the gas metal arc welding process. The weld region of as‐welded samples exhibited a higher hardness value of 80 HV0.1 compared to the base material. In addition, the feasibility of post‐weld heat treatment in order to enhance the mechanical properties and to obtain more homogeneous microstructure of 6061‐O aluminum alloys was evaluated.  相似文献   

16.
The interfacial microstructures characteristics of alumina ceramic body reinforced with yttria stabilized zirconia (YSZ) was evaluated after friction welding to 6061 aluminum alloy using optical and electron microscopy. Alumina rods containing 25 and 50 wt% yttria stabilized zirconia were fabricated by slip casting in plaster of Paris (POP) molds and subsequently sintered at 1600 °C. On the other hand, aluminum rods were machine down to the required dimension using a lathe machine. The diameter of the ceramic and the metal rods was 16 mm. Rotational speeds for the friction welding were varied between 900 and 1800 rpm. The friction pressure was maintained at 7 MPa for a friction time of 30 s. Optical and scanning electron microscopy was used to analyze the microstructure of the resultant joints, particularly at the interface. The joints were also examined with EDX line (energy dispersive X-ray) in order to determine the phases formed during the welding. The mechanical properties of the friction welded YSZ-Al2O3 composite to 6061 alloy were determined with a four-point bend test and Vickers microhardness. The experimental results showed the degree of deformation varied significantly for the 6061 Al alloy than the ceramic composite part. The mechanical strength of friction-welded ceramic composite/6061 Al alloy components were obviously affected by joining rotational speed selected which decreases in strength with increasing rotational speed.  相似文献   

17.
Multi-sheet structures of an aluminum alloy were fabricated through laser welding combined with superplastic forming technique in this paper. The novel welding design and bonding have been developed to improve the formation quality of the structure for the aluminum alloy. The laser welding microstructure of the fine-grained 5083 Al alloy was studied. The fine equiaxed grains with 1.5 μm in center zone of weld were observed by transmission electron microscope. Tensile tests show that ultimate tensile strength of the welded specimen is about 91% that of the base metal at 500 °C. The distribution in thickness within the formed structure was investigated. It reveals homogeneous deformation and well-bonding property of the structure. The present study verifies the feasibility of the processing procedures for the multi-sheet structures of an aluminum alloy.  相似文献   

18.
目的研究铝铜异种材料的搅拌摩擦焊搭接工艺,揭示搭接接头界面行为演变的基本规律。方法对1mm的6061铝合金与1 mm的紫铜薄板进行搅拌摩擦焊搭接焊接,测试焊缝的力学性能,对焊缝组织进行分析。结果焊缝表面成形良好,焊缝内部无缺陷。接头的最高拉伸强度达到1447 N,观察拉伸接头断口形貌,发现断裂均发生在上层铝合金的热影响区。结论接头连接界面区域生成钩状"自锁紧"结构,这种钩状"自锁紧"结构增加了铝铜之间的有效接触面积,有利于提高焊缝连接强度。  相似文献   

19.
A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.  相似文献   

20.
We report herein the first development and fabrication of a 6061 aluminum alloy pan and compare its tuning and acoustic spectra for selected notes with a standard low-carbon steel Caribbean pan fabricated from a 210-L barrel. The experimental aluminum alloy pan was completely manufactured by welding a 1.68-mm-thick head sheet to a 9-mm2 aluminum alloy hoop, sinking the head by pneumatic hammering and welding a 1.15-mm-thick aluminum alloy side or skirt to the hoop. This experimental pan was 0.66 m in diameter, in contrast to the 210-L steel barrel standard, which had a diameter of 0.57 m. Chromatic tones were observed for most rim notes on the aluminum alloy pan, but the highest octave range notes at the pan bottom were not tuned. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated the necessity for high dislocation densities and associated hardness in order to stabilize the notes and to assure their chromatic tuning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号