首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
波束形成的实时性一直是声纳和雷达等领域信号处理过程中的重点和难点。本文采用基于CUDA(Compute Unified Device Architecture,统一计算设备架构)的GPU(Graphic Processing Unit,图形处理器)与CPU协作处理方法,实现了宽带波束形成的实时处理。本方法的处理速度相较于matlab和CPU平台可以提高一至两个数量级,相较于同等处理速度的多DSP平台则体现了开发周期短、费用低、工作量小和可靠性高等众多优势。  相似文献   

2.
该系统采用基于CUDA(Compute Unified Device Architecture,统一计算设备架构)并行编程模型的GPU(Graphic Processing Unit,图形处理器),完成了宽带LFM及CW信号的几种经典波束形成和匹配滤波过程,并实现了系统的实时性处理。实验结果表明:该系统与CPU平台相比,处理速度提高了近一个数量级;与具有同等处理速度的DSP阵列信号处理平台相比,克服了开发周期长、成本高和移植性差等缺点。随着声纳信号处理数据量的日益增大,将GPU强大的通用计算能力应用到声纳领域的各个环节,是一个值得继续深入研究的课题。  相似文献   

3.
新一代APU全新架构解析——CPU核心 AMD新一代APU完成了CPU和GPU两项同步升级,CPU升级到Piledriver(打桩机)核心,GPU也升级到Radeon HD 7000系列DX11核心,整体性能增强的同时还降低了功耗。  相似文献   

4.
基于OpenCL的数字相控阵雷达干扰模拟   总被引:1,自引:0,他引:1  
针对现代战争复杂电磁环境以及数字相控阵雷达干扰信号生成数据量大、多波束等难点,利用图形处理器(GPU)带宽高,运算能力强的特点,使用OpenCL异构编程框架实现数据级并行策略,设计了基于OpenCL的五种典型数字干扰并行算法。算法根据GPU的读写机制进行优化设计,充分发掘了现有GPU的并行计算能力。实验结果表明:基于GPU的数据并行计算程序与中央处理器(CPU)平台相比较,加速比最大可达3.25,提高了相关雷达回波模拟设备的速度,基本满足数字相控阵雷达信号处理的实时性要求。  相似文献   

5.
该系统采用基于CUDA(Compute Unified Device Architecture,统一计算设备架构)并行编程模型的GPU( GraphicProcessing Unit,图形处理器),实现了整个主动声纳宽带信号处理系统的实时性.实验结果表明:该系统与CPU平台相比,处理速度提高了近一个数量级;与具有同等处...  相似文献   

6.
用光谱分析鉴别生物特征,导致数据量大,而实际需要必须实时处理。偏最小二乘法是使用最广泛的鉴别算法,但是对于大规模数据流该算法无法达到实时性。为了解决这个应用矛盾,提出了一种基于NVIDIA CUDA架构下的并行计算策略,利用具有大规模并行计算特征的图形处理器(GPU)作为计算设备,结合GPU存储器的优势实现了偏最小二乘算法。实验的测试结果表明,在GPU上使用CUDA实现的偏最小二乘算法比在CPU上实现该算法快了47倍,性能得到了显著提高,从而使偏最小二乘算法应用于大规模数据流处理成为可能。  相似文献   

7.
数据流编程语言简化了相关领域的编程,很好地把任务计算和数据通信分开,从而使应用程序分别在任务级和数据级均具有可并行性。针对GPU/CPU混合架构中存在的大量数据并行、任务并行和流水线并行等问题,提出并实现了面向GPU/CPU混合架构的数据流程序任务划分方法和多粒度调度策略,包括任务的分类处理、GPU端任务的水平分裂和CPU端离散任务的均衡化,构造了软件流水调度,经过编译优化生成OpenCL的目标代码。任务的分类处理根据数据流程序各个任务的计算特点和任务间的通信量大小,将各任务分配到合适的计算平台上;GPU端任务的水平分裂利用GPU端任务的并行性将其均衡分裂到各个GPU,以避免GPU间高额的通信开销影响程序整体的执行性能;CPU端离散任务的均衡化通过选择合适CPU核,将CPU端各任务均衡分配给各CPU核,以保证负载均衡并提高各CPU核的利用率。实验以多块NVIDIA Tesla C2050、多核CPU为混合架构平台,选取多媒体领域典型的算法作为测试程序,实验结果表明了划分方法和调度策略的有效性。  相似文献   

8.
使用GPU技术的数据流分位数并行计算方法   总被引:1,自引:0,他引:1  
周勇  王皓  程春田 《计算机应用》2010,30(2):543-546
数据流实时、连续、快速到达的特点决定了数据流的实时处理能力。在处理低维数据流时经常使用分位数信息来描述数据流的统计信息,利用图形处理器(GPU)的强大计算能力和高内存带宽的特性计算数据流分位数信息,提出了基于统一计算设备架构(CUDA)的数据流处理模型和基于该模型的数据流分位数并行计算方法。实验证明,该方法在提供不低于纯CPU分位数算法相同精度的条件下,使数据流分位数的实时计算带宽得到了显著的提高。  相似文献   

9.
海底地形地貌探测是海洋资源开发和工程建设的基础,多波束声纳图像是反映水下地形地貌的重要手段,对其处理技术的研究具有重要意义。文中介绍了多波束声纳图像的形成原理及其特点,分析了影响多波束声纳图像的主要因素,从回波强度数据修正、声纳图像的生成和声纳图像改正三个方面,对多波束声纳图像处理的关键技术进行了详细介绍。总结和分析了目前国内外多波束声纳图像主要处理技术的研究现状和发展趋势,提出了研究多波束声纳图像处理技术的若干建议。  相似文献   

10.
高光谱图像分类算法通常需要逐点对图像中的像素点进行迭代处理,计算复杂度及并行程度存在较大差异。随着高光谱遥感图像空间、光谱和辐射分辨率的不断提升,这些算法无法满足实时处理海量遥感图像数据的需求。通过分析NPU存储计算一体化模式与遥感图像分类算法的实现步骤,设计低功耗CPU+NPU异构资源计算架构的低秩稀疏子空间聚类(LRSSC)算法,将数据密集型计算转移至NPU,并利用NPU数据驱动并行计算和内置AI加速,对基于机器学习算法的海量遥感数据进行实时分类。受到big.LITTLE计算范式的启发,CPU+NPU异构资源计算架构由8 bit和低精度位宽NPU共同组成以提高整体吞吐量,同时减少图网络推理过程中的能量损耗。实验结果表明,与CPU计算架构和CPU+GPU异构计算架构的LRSSC算法相比,CPU+NPU异构计算架构的LRSSC算法在Pavia University遥感数据集下的计算速度提升了3~14倍。  相似文献   

11.
徐启迪  刘争红  郑霖 《计算机应用》2022,42(12):3841-3846
随着通信技术的发展,通信终端逐渐采用软件的方式来兼容多种通信制式和协议。针对以计算机中央处理器(CPU)作为运算单元的传统软件无线电架构,无法满足高速无线通信系统如多进多出(MIMO)等宽带数据的吞吐率要求问题,提出了一种基于图形处理器(GPU)的低密度奇偶校验(LDPC)码译码器的加速方法。首先,根据GPU并行加速异构计算在GNU Radio 4G/5G物理层信号处理模块中的加速表现的理论分析,采用了并行效率更高的分层归一化最小和(LNMS)算法;其次,通过使用全局同步策略、合理分配GPU内存空间以及流并行机制等方法减少了译码器的译码时延,同时配合GPU多线程并行技术对LDPC码的译码流程进行了并行优化;最后,在软件无线电平台上对提出的GPU加速译码器进行了实现与验证,并分析了该并行译码器的误码率性能和加速性能的瓶颈。实验结果表明,与传统的CPU串行码处理方式相比,CPU+GPU异构平台对LDPC码的译码速率可提升至原来的200倍左右,译码器的吞吐量可以达到1 Gb/s以上,特别是在大规模数据的情况下对传统译码器的译码性有着较大的提升。  相似文献   

12.
在过去,衡量一款处理器(CPU)的综合战力,我们主要看它的工作频率与核心数量,然而自从AMD推出融合了GPU(图形芯片)的APU后,现在市场上的CPU大部分都内置了GPU。如今,我们衡量CPU性能时又多了个理念——是否支持异构计算。异构计算对于处理器来说,真的如此重要么?  相似文献   

13.
基于CUDA的双三次B样条缩放方法   总被引:4,自引:2,他引:2       下载免费PDF全文
Nvidia在GeForce 8系列显卡上推出的CUDA(统一计算设备架构)技术使GPU通用计算(GPGPU)从图形硬件流水线和高级绘制语言中解放出来,开发人员无须掌握图形学编程方法即可在单任务多数据模式(SIMD)下完成高性能并行计算。研究了CUDA的设计思想和编程方式,改进了基于双三次B样条曲面的图像缩放算法,使用多个线程将计算中耗时的B样条重采样部分改造成SIMD模式,并分别采用CUDA中全局存储器和共享存储器策略在CUDA上完成图像缩放的全过程。实验结果表明,基于CUDA的B样条曲面并行插值方法成功实现了硬件加速,相对于CPU上运行的B样条缩放算法,其执行效率明显提高,易于扩展,对于大规模数据处理呈现出良好的实时处理能力。  相似文献   

14.
为利用统一计算设备架构(CUDA)强大的并行处理能力实现快速图像融合,提出一种适用于并行运算的图像融合算法,包括高斯滤波、直方图均衡、基于小波变换的图像融合。通过CUDA编程对以上算法进行实现,并将其与对应的CPU程序相比较,实验结果表明,图形处理单元(GPU)执行效率比CPU高出一个数量级,并且随着数据量的增加,GPU的加速比还会增大。  相似文献   

15.
基于图形处理器的边缘检测算法   总被引:1,自引:0,他引:1  
边缘检测是一种高度并行的算法,计算量较大,传统的CPU处理难以满足实时要求。针对图像边缘检测问题的计算密集性,在分析常用边缘检测算法的基础上,利用CUDA(Compute Unified Device Architecture,计算统一设备架构)软硬件体系架构,提出了图像边缘检测的GPU(Graphics Processing Unit,图形处理器)实现方案。首先介绍GPU高强度并行运算的体系结构基础,并将Roberts和Sobel这两个具有代表性的图像边缘检测算法移植到GPU,然后利用当前同等价格的CPU和GPU进行对比实验,利用多幅不同分辨率图像作为测试数据,对比CPU和GPU方案的计算效率。实验结果表明,与相同算法的CPU实现相比,其GPU实现获得了相同的处理效果,并将计算效率最高提升到了17倍以上,以此证明GPU在数字图像处理的实际应用中大有潜力。  相似文献   

16.
UUDA编程模型     
邓培智 《Internet》2008,(5):84-85
在CUDA的架构中,GPU可视为一个计算设备,是主机或者CPU的协处理器,用于处理高度并行的计算。GPU(或者称为“设备,device”)均具备自己的存储器(device memory,设备内存),可以并行地运行许多线程。在CUDA程序中,并行计算的部分可以被分离到一个被称为kernel(内核)的函数。  相似文献   

17.
UUDA编程模型   总被引:1,自引:0,他引:1  
邓培智 《程序员》2008,(5):84-85
在CUDA的架构中,GPU可视为一个计算设备,是主机或者CPU的协处理器,用于处理高度并行的计算。GPU(或者称为“设备,device”)均具备自己的存储器(device memory,设备内存),可以并行地运行许多线程。在CUDA程序中,并行计算的部分可以被分离到一个被称为kernel(内核)的函数。  相似文献   

18.
特征点检测被广泛应用于目标识别、跟踪及三维重建等领域。针对三维重建算法中特征点检测算法运算量大、耗时多的特点,对高斯差分(Difference-of-Gaussian,DoG)算法进行改进,提出特征点检测DoG并行算法。基于OpenMP的多核CPU、CUDA及OpenCL架构的GPU并行环境,设计实现DoG特征点检测并行算法。对hallFeng图像集在不同实验平台进行对比实验,实验结果表明,基于OpenMP的多核CPU的并行算法表现出良好的多核可扩展性,基于CUDA及OpenCL架构的GPU并行算法可获得较高加速比,最高加速比可达96.79,具有显著的加速效果,且具有良好的数据和平台可扩展性。  相似文献   

19.
现今CPU和GPU的发展已经出现新的瓶颈,将两者“结合”在同一块芯片上成为一种新的趋势。这种新的异构架构给片上共享资源的管理带来压力。而共享末级缓存(LLC)的管理对性能的影响非常关键。由于CPU程序和GPU程序的不同特性,给CPU和GPU间共享的末级缓存管理带来新的挑战。通过分析GPU程序访存特征,借鉴之前的缓存管理方案,提出对CPU-GPU融合系统的末级缓存进行等量的静态划分和最优静态划分的方案。实验结果表明:通过缓存划分可以有效避免CPU和GPU程序间的干扰。与传统LRU策略相比,等量静态划分和最优静态划分可以使系统整体性能分别提高7.68%和11.62%。  相似文献   

20.
张硕  何发智  周毅  鄢小虎 《计算机应用》2016,36(12):3274-3279
基于统一计算设备架构(CUDA)对图形处理器(GPU)下的并行粒子群优化(PSO)算法作改进研究。根据CUDA的硬件体系结构特点,可知Block是串行执行的,线程束(Warp)才是流多处理器(SM)调度和执行的基本单位。为了充分利用Block中线程的并行性,提出基于自适应线程束的GPU并行PSO算法:将粒子的维度和线程相对应;利用GPU的Warp级并行,根据维度的不同自适应地将每个粒子与一个或多个Warp相对应;自适应地将一个或多个粒子与每个Block相对应。与已有的粗粒度并行方法(将每个粒子和线程相对应)以及细粒度并行方法(将每个粒子和Block相对应)进行了对比分析,实验结果表明,所提出的并行方法相对前两种并行方法,CPU加速比最多提高了40。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号