首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cadmium Selenide thin films have been electrodeposited from an acidic bath using CdSO4 as a cadmium source and SeO2 as a selenium source at pH=3 on to stainless steel and fluorine-tin oxide coated glass substrates. The CdSe films have been characterized by X-ray diffraction, scanning electron microscopy and optical absorption. X-ray diffraction spectra showed that CdSe is polycrystalline with single hexagonal phase. The intensity of the (0 0 2) peak increases remarkably by annealing in nitrogen atmosphere. A microstructural study revealed that the films were uniform and well covered the substrate. Optical absorption studies showed that the bandgap of the CdSe is 1.70 eV. It is observed that the conductivity of the CdSe films increases by annealing in nitrogen atmosphere. The photoelectrochemical activities of CdSe films deposited on stainless steel and fluorine-tin oxide coated glass have been studied by using CdSe/ 1 M NaOH-1 M Na2S-1 MS / C cell configuration and it is found that films deposited on stainless steel give better performance, photoelectrochemical (PEC) studies also reveal that the CdSe has n-type conductivity.  相似文献   

3.
Thin films of cadmium selenide (CdSe) as a semiconductor is well suited for opto-electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, a preliminary and thorough study of optical and structural properties of the host material is an important step. Based on the above view, the structural and optical properties of CdSe films have been studied thoroughly in the present work. The host material, CdSe film, has been prepared by the physical vapour deposition method of electron beam evaporation (PVD: EBE) technique under a pressure of 5 × 10−5 mbar. The structural properties have been studied by XRD technique. The hexagonal structure with a preferred orientation along the (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films have been analysed for optical band gap and absorbed a direct intrinsic band gap of 1·92 eV.  相似文献   

4.
Nanocrystalline CdSe and Al:CdSe semiconductor thin films have been successfully synthesized onto amorphous and FTO glass substrates by spray pyrolysis technique. Aqueous solutions containing precursors of Cd and Se have been used to obtain good quality films. The optimized films have been characterized for their structural, morphological, wettability and optical properties. X-ray diffraction (XRD) studies show that the films are polycrystalline in nature with hexagonal crystal structure. Scanning electron microscopy (SEM) studies show that the film surface is smooth, uniform and compact in nature. Water wettability study reveals that the films are hydrophilic behavior. The formation of CdSe and Al:CdSe thin film were confirmed with the help of FTIR spectroscopy. UV–vis spectrophotometric measurement showed a direct allowed band gap lying in the range 1.673–1.87 eV. Output characteristics were studied by using cell configuration n- CdSe/Al:CdSe |1 M (NaOH + Na2 + S)|C. An efficient solar cell having a power conversion efficiency of 0.38% at illumination 25 mW cm−2 was fabricated.  相似文献   

5.
Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The synthesized nanoparticles have been characterized using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV–Visible), photoluminescence spectroscopy (PL), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID), at room temperature. From XRD analysis, pure and cobalt-doped CdSe nanoparticles have been found to be polycrystalline in nature and possess zinc blende phase having cubic structure. In addition to this, some peaks related to secondary phase or impurities such as cobalt diselenide (CoSe2) have also been observed. The calculated average crystallite size of the nanoparticles lies in the range, 3–21 nm, which is consistent with the results obtained from TEM analysis. The decrease in average crystallite size and blue shift in the band gap has been observed with Co-doping into the host CdSe nanoparticles. The magnetic analysis shows the ferromagnetic behaviour up to 10% of Co-doping concentration. The increase of Co content beyond 10% doping concentration leads to antiferromagnetic interactions between the Co ions, which suppress the ferromagnetism.  相似文献   

6.
CdSe films were deposited onto glass substrates by the hot wall technique at a system pressure of 10–6torr. The optimum deposition conditions for obtaining device grade films were determined. Photoelectrical and optical properties of the films deposited at the optimum conditions were studied. Information on the refractive index and absorption coefficient were derived from the above measurements and the data were analysed in the light of the existing theories. Direct transitions corresponding to band gaps of 1.7 and 1.92 eV were obtained. Measurement of mobility of CdSe films as a function of temperature indicated ionized impurity scattering to be predominant in our temperature range of measurements. The scattering parameter and the effective massm e * of carriers was determined from thermoelectric power measurements.  相似文献   

7.
An ammonia-free chemical-bath deposition was used to obtain CdSe thin films on glass substrate. The materials used in the chemical bath were cadmium chloride complexed with sodium citrate and sodium selenosulphate. The preparation conditions, especially the starting solution characteristics, such as concentration of dissolved materials, temperature, pH value as well as deposition time and immersion cycles were optimized to obtain homogeneous stoichiometric films with good adherence to the glass substrate. The films thickness was in the range of 400–500 nm with a growing time of 4 h. The material obtained was characterized by optical absorption, SEM with the energy dispersive X-ray analysis (EDS) and X-ray diffraction. The films obtained at bath temperatures of 70 and 80 °C had the hexagonal structure (of wurtzite type), with crystallite size of about 20 nm. Room temperature deposition results in films with the cubic structure and crystallite size of about 4 nm. From optical transmission data, an energy gap equal to 1.88 eV was found. The material is interesting for applications in hybrid systems for solar energy conversion.  相似文献   

8.
In the study presented in this paper we attempted to interpret the reflectance and the transmittance of sprayed CdS films. Assuming a model based on multilayer film theory we showed that sprayed CdS film is a combination of multilayer stacks of crystallites and gaseous inclusions.  相似文献   

9.
Cadmium selenide thin films have been deposited on non-conducting glass and stainless steel substrates. Films were characterized by X-ray diffraction, atomic absorption spectroscopy. The electrical and thermoelectrical properties also studied. The X-ray diffraction analysis shows that the film samples are in cubic crystal structure. Film was found to be cadmium deficient. The efficiency of photoelectrode was found to be 1.15 % using sulphide-polysulphide electrolyte.  相似文献   

10.
CdSe x Te1 – x films have been deposited by the brush plating technique for the first time, on titanium and conducting glass substrates at room temperature. These films were annealed in argon atmosphere at 475°C for 15 min. Their structural, optical and photoelectrochemical (PEC) properties are presented and discussed. The power conversion efficiency has been found to be 9.0% at 60 mW cm–2white light illumination. A peak quantum efficiency of 0.7 has been obtained for the films of composition CdSe0.7Te0.3. Donor concentration of 1017cm–3and electron mobility of 60 cm2V–1sec–1were obtained.  相似文献   

11.
The rise and decay of the photocurrent in CdSe films prepared by spray pyrolysis were investigated. The decay time at an illumination of 10 mW cm?2 was 1.6 ms. The dependence of the decay time on the light intensity, the background illumination and the chopping frequency was examined. The lifetime of the majority carriers, as deduced from the decay curve, was found to vary with the illumination, which gives a clue to the superlinearity shown in the illumination-current characteristics of these films. At 5 mW cm?2 the lifetime was 0.8 ms and at 10 mW cm?2 it was 1.6 ms. The amplitude of photoconductivity decrased by 33% when the frequency of the chopper was increased from 50 to 270 Hz.  相似文献   

12.
The thin films of Cd1-x Zn x S (x?=?0, 0.2, 0.4, 0.6, 0.8 and 1) have been prepared by the vacuum evaporation method using a mechanically alloyed mixture of CdS and ZnS. The structural, optical and electrical properties have been investigated through the X-ray diffractometer, spectrophotometer and Keithley electrometer. The X-ray diffraction patterns of these films show that films are polycrystalline in nature having preferential orientation along the (002) plane. In the absorption spectra of these films, absorption edge shifts towards lower wavelength with the increase of Zn concentration. The energy band gap has been determined using these spectra. It is found that the energy band gap increases with increasing Zn concentration. The electrical conductivity of so prepared thin films has been determined using a IV characteristic curve for these films. The result indicates that the electrical conductivity decreases with increasing Zn content and increases with temperature. An effort has also been made to obtain activation energy of these films which increases with increasing Zn concentration in CdS.  相似文献   

13.
The technologically important Cd1−xNixSe thin films with variable compositions (0 ≤ x ≤ 1) have been developed by a chemical deposition method. The structural, compositional, optical and electrical properties were studied by X-ray diffraction, Scanning electron microscopy, Atomic absorption spectroscopy, UV–visible double beam spectrophotometer and d.c. two probe method. XRD studies indicate polycrystalline in nature with hexagonal phase for all the samples. The lattice constants decrease with increase in nickel content in CdSe host lattice. The surface morphology study of all samples reveals uniform and spherical grains. An optical study of the samples shows that band gap value decreases with nickel content. Electrical measurements depict semiconducting properties of all samples.  相似文献   

14.
Preparation and characterization of CdSe thin film semiconductors, prepared by cathodic electrodeposition from an acid sulphate solution (CdSO4-SeO2) before and after thermal treatment in nitrogen atmosphere, were investigated. The effect of the bath temperature and how it affects the cadmium selenide (CdSe) deposits were studied. The formation of compact barrier layers of zinc blende CdSe was attained. Scanning electron microscopy and X-ray diffraction patterns present a remarkably intense cubic structure, even after thermal treatment. The Ni/CdSe/Au structure may exhibit rectifying properties depending on the temperature during the electrodeposition. Thermal annealing in nitrogen gas increases the conductivity of CdSe and intensifies the rectification properties of the Ni/CdSe/Au structure.  相似文献   

15.
Smooth and pinhole-free thin films of Ga5Ge19Te76 have been obtained by vacuum evaporation. The as-deposited films are amorphous. Thermal annealing at 222°C leads to an amorphous-to-crystalline transition. A maximum contrast of 30% in reflectivity (measured at 1 µm) has been obtained on phase transition from amorphous to crystalline state. The optical constants and the bandgap are reported.  相似文献   

16.
Mustafa Öztas 《Thin solid films》2008,516(8):1703-1709
ZnO:Cu thin films have been deposited by spray pyrolysis techniques within two different (450 °C and 500 °C) substrate temperatures. The structural properties of ZnO:Cu thin films have been investigated by X-ray diffraction techniques. The X-ray diffraction spectra showed that ZnO:Cu thin films are polycrystalline with the hexagonal structure and show a good c-axis orientation perpendicular to the substrate. The most preferential orientation is along the (002) direction for all spray deposited ZnO:Cu films together with orientations in the (100) and (101) planes also being abundant. Some parameters of the films were calculated and correlated with the film thickness for two different substrate temperatures. The optical properties of ZnO:Cu thin films have been investigated by UV/VIS spectrometer and the band gap values were found to be ranging from 3.29 eV to 3.46 eV.  相似文献   

17.
The structural, optical and electrical properties of InN polycrystalline films on glass substrate are investigated by means of X-ray photoelectron spectroscopy, Raman scattering measurements, X-ray diffraction analysis, optical spectroscopy, and electrical measurements as a function of the inverse of temperature. The absorption edge for the films is most likely due to an impurity band formed by the presence of defects in the material. Such an impurity band, located at 1.6 eV extends itself to about 1.8 eV above the Fermi level, and it is attributed to nitrogen vacancies present in the material. The Raman scattering data also reveal the incorporation of oxygen in the InN films, leading to the formation of the In2O3 amorphous phase during the process of sputtering. Additionally, the X-ray photoelectron spectroscopy of the valence band, which is highly desirable to the determination of the Fermi level, confirms the optical gap energy. Furthermore, the X-ray diffraction patterns of the thinner films present broader peaks, indicating high values for the strain between the film lattice and the glass substrate. Finally, first principles calculations are used to investigate the optical properties of InN and also to support the experimental findings.  相似文献   

18.
Polycrystalline thin films of CuInSe2 have been prepared by chemical spray pyrolysis technique as a function of Cu/In ratio. Incremental growth of the various ratios followed at different substrate temperatures ranging from 548 to 623 K. Characterizations by means of compositional analysis, X-ray diffraction and spectrophotometry measurements have been carried out. Voigt profile method has been used to determine the microstructure parameter (crystallite/domain size and macrostrain). The effect of Cu/In ratio as well as substrate temperature on the optical features (absorption coefficient and band gap) of these films has been investigated. The films of different Cu/In ratios (0.9–1.1) displayed a band gap from 0.92 to 1.025 eV for direct transition. The dark resistivity measurements at room temperature of Cu-rich samples show about five orders of magnitude higher than that of In-rich samples.  相似文献   

19.
The plasma-enhanced chemical vapor deposition of boron nitride films in a low pressure, parallel plate reactor incorporating an electromagnet was investigated. Films were deposited from gas mixtures of diborane, hydrogen and ammonia. The ratio of boron to nitrogen was approximately 1.7 when an ammonia-to-diborane ratio of 4 was used. The films had the following optical properties: a band gap in the range 5.6–5.8 eV, an absorption coefficient (at 6.0 eV) of about 1×105 cm−1 and an index of refraction of 1.7. In general the optical properties were identical, with or without the application of a low intensity magnetic field.  相似文献   

20.
E. Alves  N. Franco  F. Munnik  M. Peres  R. Martins 《Vacuum》2009,83(10):1274-2791
Zinc oxide is getting an enormous attention due to its potential applications in a variety of fields such as optoelectronics, spintronics and sensors. The renewed interest in this wide band gap oxide semiconductor relies on its direct high energy gap (Eg ∼ 3.437 eV at low temperatures) and large exciton binding energy. However to reach the stage of device production the difficulty to produce in a reproducible way p-type doping must be overcome.In this study we discuss the structural and optical properties of ZnO films doped with nitrogen, a potential p-type dopant. The films were deposited by magnetron sputtering using different conditions and substrates. The composition and structural properties of the films were studied combining X-ray diffraction (XRD), Rutherford backscattering (RBS), and heavy ion elastic recoil detection analysis (HI-ERDA). The results show an improvement of the quality of the films deposited on sapphire with increasing radio-frequency (RF) power with a preferentially growth along the c-axis. The ERDA analysis reveals the presence of H in the films and a homogeneous composition over the entire thickness. The photoluminescence of annealed samples evidences an improvement on the optical quality as identified by the well structured near band edge recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号