首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The rocks of the McMurdo Dry Valleys desert in Antarctica harbour endolithic communities of micro‐organisms such as lichens, fungi, cyanobacteria and bacteria. Establishing the physiological status and viability of these microbial colonies in their natural microhabitat has far‐reaching implications for understanding the microbial ecology of the harsh environment of this polar desert. Here we describe the use of confocal microscopy and a specific fluorescent probe (FUN‐1) to evaluate the metabolic activity of fungal cells. Application of confocal microscopy also served to identify living and dead bacteria or cyanobacteria using the fluorescent assay reagents Live/Dead SYTO 9 and propidium iodide or SYTOX Green, respectively. In addition, through the use of epifluorescence microscopy, live/dead bacteria and cyanobacteria could be detected by estimating fluorescence from their cell components provoked by simultaneously staining with nucleic acids stains such as DAPI and SYTOX Green.  相似文献   

2.
Cole  Davies  Hyde  & Ashford 《Journal of microscopy》2000,197(3):239-249
Two fluorochromes, ER-TrackerTM Blue-White DPX dye and the fluorescent brefeldin A (BFA) derivative, BODIPY-BFA, label the endoplasmic reticulum (ER) in hyphal tips of Pisolithus tinctorius and allow its differentiation from the tubular-vacuole system at the light microscope level in living cells. The ER-Tracker dye labels a reticulate network similar in distribution to ER as seen in electron micrographs of freeze-substituted hyphae. BODIPY-BFA stains a thicker axially aligned structure with an expanded region at the apex, which is similar to that seen when hyphae are stained with ER-Tracker dye in the presence of unconjugated BFA. This structure is considered to be ER modified by BFA, a view supported by ultrastructural observations of the effect of BFA on the fungal ER. Both fluorescent probes also stain punctate structures, which are most likely to be Golgi bodies. Neither probe labels the tubular-vacuole system.  相似文献   

3.
This ultrastructural study showed that nonisotopic methanolic hafnium chloride and aqueous lead solution was an excellent new electron stain for enhancing TEM contrasts of fungal and plant cell structures. The ultrastructural definition provided by the new stain was often superior to that provided by conventional staining with uranyl acetate and lead. Definition of fine ultrastructure was also supported by quantitative data on TEM contrast ratios of organelles and components in fungal and plant cells. In particular, polysaccharides, which were localized in cell walls, glycogen particles, starch grains, and plant Golgi vesicle components, were much more reactive to the new stain than to the conventional one. The new nonisotopic stain is useful for enhancing the contrast of ultrastructure in biological tissues and is a safer alternative to uranyl acetate. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
We have studied the wavelength dependence of the two‐photon excitation efficiency for a number of common UV excitable fluorescent dyes; the nuclear stains DAPI, Hoechst and SYTOX Green, chitin‐ and cellulose‐staining dye Calcofluor White and Alexa Fluor 350, in the visible and near‐infrared wavelength range (540–800 nm). For several of the dyes, we observe a substantial increase in the fluorescence emission intensity for shorter excitation wavelengths than the 680 nm which is the shortest wavelength usually available for two‐photon microscopy. We also find that although the rate of photo‐bleaching increases at shorter wavelengths, it is still possible to acquire many images with higher fluorescence intensity. This is particularly useful for applications where the aim is to image the structure, rather than monitoring changes in emission intensity over extended periods of time. We measure the excitation spectrum when the dyes are used to stain biological specimens to get a more accurate representation of the spectrum of the dye in a cell environment as compared to solution‐based measurements.  相似文献   

5.
One of the most promising applications of encapsulated living cells is their use as protected transplanted tissue into the human body. A suitable system for the protection of living cells is the use of nano‐ or microcapsules of polyelectrolytes. These shells can be deposited easily on top of the cells by means of a layer‐by‐layer technique. An interesting feature of the capsules is the possibility to control their properties on a nanometre level, tuning their wall texture via the preparation conditions. Here we introduce a model system to test the protection ability of polyelectrolyte capsules. Common bakery yeast cells were encapsulated. They were coated with a fluorescently labelled shell at conditions known to guarantee cell survival, and the cell interior was stained with DAPI. The protozoan Paramecium primaurelia was incubated with this double‐stained living yeast and visualized by means of two‐photon excitation fluorescence microscopy. Cross‐sections of the dye‐stained material as well as autofluorescence of the fixed protozoan allowed us to follow the digestion of the coated yeast with time. Our investigation reveals that capsules prepared under these deposition conditions are permeable to lysosomal enzymes, leading to degradation of the yeast inside the intact capsules. Our preliminary results indicate the suitability of the introduced model as a test system of this permeability.  相似文献   

6.
We have developed a real‐time imaging technique for diagnosis of kidney diseases which is composed of two steps, staining renal cells safely with food dyes and optical sectioning of living renal tissue to obtain histological images by multiphoton microscopy (MPM). Here, we demonstrated that the MPM imaging with food dyes, including erythrosine and indigo carmine, could be used as fluorescent agents to visualize renal functions and structures such as glomerular bloodstreams, glomerular filtration, and morphology of glomeruli and renal tubules. We also showed that the kidneys of IgA nephropathy model‐mice stained with the food dyes presented histopathological characteristics different from those observed in normal kidneys. The use of the food dyes enhances the quality of tissue images obtained by MPM and offers the potential to contribute to a clinical real‐time diagnosis of kidney diseases. Microsc. Res. Tech. 78:847–858, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
FM‐dyes are widely used to study endocytosis, vesicle trafficking and organelle organization in living eukaryotic cells. The increasing use of FM‐dyes in plant cells has provoked much debate with regard to their suitability as endocytosis markers, which organelles they stain and the precise pathways they follow through the vesicle trafficking network. A primary aim of this article is to assess critically the current status of this debate in plant cells. For this purpose, background information on the important characteristics of the FM‐dyes, and of optimal dye concentrations, conditions of dye storage, and staining and imaging protocols, are provided. Particular emphasis is placed on using the FM‐dyes in double labelling experiments to identity specific organelles. In this way, staining of the Golgi with FM4‐64 has been demonstrated for the first time.  相似文献   

8.
The fluorescent metabolic labeling of microorganisms genome is an advanced imaging technique to observe and study the native shapes, structural changes, functions, and tracking of nucleic acids in single cells or tissues. We have attempted to visualize the newly synthesized DNA within the intact nucleoid of ice‐embedded proliferating cells of Escherichia coli K‐12 (thymidine‐requiring mutant, strain N4316) via correlative light‐electron microscopy. For that purpose, erythrosine‐11‐dUTP was synthesized and used as a modified analog of the exogenous thymidine substrate for metabolic incorporation into the bacterial chromosome. The formed fluorescent genomic DNA during in cellulo polymerase reaction caused a minimal cellular arrest and cytotoxicity of E. coli at certain controlled conditions. The stained cells were visualized in typical red emission color via an epifluorescence microscope. They were further ice‐embedded and examined with a Hilbert differential contrast transmission electron microscopy. At high‐resolution, the ultrastructure of tagged nucleoid appeared with significantly higher electron dense in comparison to the unlabeled one. The enhanced contrast areas in the chromosome were ascribed to the presence of iodine contents from erythrosine dye. The presented labeling approach might be a powerful strategy to reveal the structural and dynamic changes in natural DNA replication including the relationship between newly synthesized in vivo nucleic acid and the physiological state of the cell.  相似文献   

9.
Penetration of hydrophilic acid and basic dyes into sections cut from glycol methacrylate (GMA)-embedded tissues was studied; as were the effects on such staining of superficial coatings of thin layers of GMA. Dye size was a major factor in controlling penetration of resin and staining of tissues. ‘Large’ dyes (>1000 Da) entered GMA very slowly, and only stained those tissue components poorly infiltrated by resin. ‘Small’ dyes (< 550 Da) penetrated GMA readily, and stained tissue components whether or not they were resin-infiltrated. Dyes of intermediate size penetrated the resin, but the staining of resin-infiltrated tissue elements was slow. Background staining of resin also varied with dye size. Large dyes gave no staining of GMA. Small dyes did, but were readily removed by water washing. Dyes of intermediate size penetrated resin slowly, and once inside were lost slowly. This gave background staining which required use of the plasticizing solvent ethanol for its removal. Increases in resin cross-linking also reduced staining rates. As a consequence, it is possible to predict the probable suitability, or otherwise, of various staining reagents proposed for use with GMA sections; and also the probable influences of histoprocessing on stain penetration. In particular it is suggested that penetration of colloidal metals and macromolecular reagents (e.g. labelled antibodies and lectins) will be limited to resin-free structures, and to the surface of resin sections. The use of superficial GMA coatings as convenient semipermeable membranes for enzyme histochemistry is also noted.  相似文献   

10.
In the present study, Microscopy studies were performed to characterize the blood cells of the mangrove crab Episesarma tetragonum. Three types of hemocytes were observed: granulocytes, semi‐granulocytes, and hyalinocytes or agranulocytes. Hyalinocytes have a distinguished nucleus surrounded by the cytoplasm, and a peculiar cell type was present throughout the cytosol, lysosomes with hemocyte types (granules) stained red (pink). Giemsa staining was used to differentiate between the large and small hemocytes. Ehrlich's staining was used to differentiate granule‐containing cells in acidophils (55%), basophils (44%), and neutrophils (<1%). Periodic acid–Schiff staining was used to identify the sugar molecules in the cytoplasm. Cell‐mediated immune reactions including phagocytosis, encapsulation, agglutination, and peroxidase‐mediated cell adhesion are the functions of hemocytes. Agglutination reaction involves both kind of cells involved in yeast and heme‐agglutination responses in invertebrates. The beta glucan outer layer of yeast cells was recognized by hemocyte receptors. Human RBC cells were agglutinated via granulocytes. E. tetragonum hemocytes are an important animal model for studying both ultrastructural and functional activity of circulating cells. In addition, E. tetragonum hemocytes exhibited excellent antibacterial and antibiofilm activities were studied through plating and microplate assays. Biofilm inhibition was also visualized through changes in biochemical assays and morphological variations were visualized through levels in in situ microscopy analysis.  相似文献   

11.
The detection of mitochondrial DNA (mtDNA) in living human cells could be useful for understanding mitochondrial behaviour during cellular processes and pathological mtDNA depletions. However, until now, human mtDNA has not been visualized in living cells with fluorescence microscopy, although it has been easily detected in organisms with larger mtDNA. Previous reports have stated that mtDNA staining results in homogeneous fluorescence of mitochondria or that animal mitochondria are refractory to DAPI staining. This paper shows that mtDNA of cultured green monkey kidney CV-1 can be stained using a very low concentration of DAPI, then detected by a cooled Photometrics CCD camera with 14-bit resolution detection. Indeed, under these conditions CV-1 cells have small fluorescent spots in the cytoplasm that colocalize with mitochondria, even after mitochondrial movements, uncoupling by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone and swelling. These observations have been reproduced for the human fibroblast foreskin cell line HS68. These results and known properties of DAPI as a specific DNA stain strongly suggest that mtDNA can be detected and visualized by fluorescence microscopy in human living cells, with potential developments in the study of mtDNA in normal and pathological situations.  相似文献   

12.
Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst‐33342, 4’, 6‐diamidino‐2‐phenylindole (DAPI), Acridine orange–Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin‐V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells.  相似文献   

13.
By applying high pressure freezing and freeze‐substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2–5 μm in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine‐rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high‐pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron‐transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS‐PAGE of lysine‐labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium‐specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.  相似文献   

14.
Cupromeronic Blue was used to stain selectively the proteoglycans in rat tail tendons under ‘critical electrolyte’ conditions. Earlier electron microscopical observations indicated that at least one type of proteoglycan filament is associated with tendon collagen fibrils at the positive staining band ‘d’. To ensure that this was not an artefact caused by specimen preparation or the subsequent positive staining of the collagen fibrils, we have analysed low angle meridional diffraction patterns from stained but not dehydrated, embedded or counterstained tissues. Axial electron density profiles of Cupromeronic Blue-stained compared with unstained rat tail tendons revealed the axial locations and relative amounts of dye in both mature and young wet specimens. In mature tendons, the difference electron density profile contained a broad peak centred near residue 180 along the 234-residue D-period. This corresponds to the electron-optical staining band ‘d’. In young tendons a similar distribution of stain was observed although in this case there was evidence of a doublet of peaks, one centred near residue 182 (band ‘d’) and the other near residue 165 (midway between bands d and e1). The wet proteoglycan-Cupromeronic Blue complexes distribute over about 30 nm along the collagen fibril axis. Comparison with the images of filaments seen in the electron microscope suggests that the dye complexes collapse significantly on dehydration and embedding.  相似文献   

15.
Fluorescent‐based live/dead labelling combined with fluorescent microscopy is one of the widely used and reliable methods for assessment of cell viability. This method is, however, not quantitative. Many image‐processing methods have been proposed for cell quantification in an image. Among all these methods, several of them are capable of quantifying the number of cells in high‐resolution images with closely packed cells. However, no method has addressed the quantification of the number of cells in low‐resolution images containing closely packed cells with variable sizes. This paper presents a novel method for automatic quantification of live/dead cells in 2D fluorescent low‐resolution images containing closely packed cells with variable sizes using a mean shift‐based gradient flow tracking. Accuracy and performance of the method was tested on growth plate confocal images. Experimental results show that our algorithm has a better performance in comparison to other methods used in similar detection conditions.  相似文献   

16.
This paper reports on a new method for the use of acridine orange (AO) in an aqueous solution at pH 4.5 for staining DNA of rat tissue sections from which RNA has been extracted selectively with cold phosphoric acid. Not only this, AO can also be used as dye-SO2 reagent, prepared with NHCl and potassium metabisulphite, for staining DNA-aldehyde molecules of acid-hydrolysed tissue sections. AO samples, manufactured by the National Aniline Division as well as by G. T. Gurr have been used with equal success. Studies of stained sections under light microscope reveal the presence of specifically stained yellowish-orange nuclei. Those sections under fluorescent microscope with proper exciter and barrier filters reveal nuclei of maroon colour. The in situ absorption spectra of nuclei stained with AO-SO2 following acid-hydrolysis of tissue sections as well as those of nuclei stained with an aqueous solution of the dye following extraction of RNA have been presented herein. The mode of binding in the former case has been considered to be due to binding of the teritary amino group of the dye molecules with the DNA-aldehyde molecules and in the latter case to be due to electrostatic binding between the positively charged dye molecules with negatively charged phosphate groups of DNA. Implications of all these findings have been discussed.  相似文献   

17.
HisTOOLogy is an open‐source software for the quantification of digital colour images of histological sections. The simple graphical user interface enables both expert and non‐expert users to rapidly extract useful information from stained tissue sections. The software's main feature is a generalizable colour separation algorithm based on k‐means clustering which accurately and reproducibly returns the amount of colour per unit area for any stain, thus allowing the quantification of tissue components. Here we describe HisTOOLogy's algorithms and graphical user interface structure, showing how it can be used to separate different dye colours in several classical stains. In addition, to demonstrate how the tool can be employed to obtain quantitative information on biological tissues, the effect of different hepatic tissue decellularization protocols on cell removal and matrix preservation was assessed through image analysis using HisTOOLogy and compared with conventional DNA and total protein content assays. HisTOOLogy's performance was also compared with ImageJ's colour deconvolution plug‐in, demonstrating its advantages in terms of ease of use and speed of colour separation.  相似文献   

18.
Visualization of bacteria in living plant cells and tissues is often problematic due to lack of stains that pass through living plant cell membranes and selectively stain bacterial cells. In this article, we report the use of 3,3′‐diaminobenzidine tetrachloride (DAB) to stain hydrogen peroxide associated with bacterial invasion of eukaryotic cells. Tissues were counterstained with aniline blue/lactophenol to stain protein in bacterial cells. Using this staining method to visualize intracellular bacterial (Burkholderia gladioli) colonization of seedling roots of switch grass (Panicum virgatum), we compared bacterial free seedling roots and those inoculated with the bacterium. To further assess application of the technique in multiple species of vascular plants, we examined vascular plants for seedling root colonization by naturally occurring seed‐transmitted bacteria. Colonization by bacteria was only observed to occur within epidermal (including root hairs) and cortical cells of root tissues, suggesting that bacteria may not be penetrating deeply into root tissues. DAB/peroxidase with counter stain aniline blue/lactophenol was effective in penetration of root cells to selectively stain bacteria. Furthermore, this stain combination permitted the visualization of the bacterial lysis process. Before any evidence of H2O2 staining, intracellular bacteria were seen to stain blue for protein content with aniline blue/lactophenol. After H2O2 staining became evident, bacteria were often swollen, without internal staining by aniline blue/lactophenol; this suggests loss of protein content. This staining method was effective for seedling root tissues; however, it was not effective at staining bacteria in shoot tissues due to poor penetration. Microsc. Res. Tech. 77:566–573, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Confocal microscopy of amphiphilic styryl dyes has been used to investigate endocytosis and vesicle trafficking in living fungal hyphae. Hyphae were treated with FM4-64, FM1-43 or TMA-DPH, three of the most commonly used membrane-selective dyes reported as markers of endocytosis. All three dyes were rapidly internalized within hyphae. FM4-64 was found best for imaging the dynamic changes in size, morphology and position of the apical vesicle cluster within growing hyphal tips because of its staining pattern, greater photostability and low cytotoxicity. FM4-64 was taken up into both the apical and subapical compartments of living hyphae in a time-dependent manner. The pattern of stain distribution was broadly similar in a range of fungal species tested ( Aspergillus nidulans, Botrytis cinerea, Magnaporthe grisea, Neurospora crassa , Phycomyces blakesleeanus, Puccinia graminis, Rhizoctonia solani, Sclerotinia sclerotiorum and Trichoderma viride ). With time, FM4-64 was internalized from the plasma membrane appearing in structures corresponding to putative endosomes, the apical vesicle cluster, the vacuolar membrane and mitochondria. These observations are consistent with dye internalization by endocytosis. A speculative model of the vesicle trafficking network within growing hyphae is presented.  相似文献   

20.
The salivary glands of Anocentor nitens (Neumann, 1897 ) occur in pairs and are located in the anterolateral region of the general cavity, with milky white color and approximately equal sizes. They consist of a secretory portion and an excretion duct. In some glandular acini, all the cells had a basophilic appearance they were stained by hematoxylin, whereas others presented cells with different staining affinities. In this work, we describe the variations observed in these glands during the feeding cycle of ticks [after feeding (0 h) and successively at 24, 48, 72, 96, 120, and 144 h]. The cells stained by hematoxylin were shown to be more reactive to Alcian blue, thus demonstrating the presence of acid glycosaminoglycans, whereas those stained using eosin presented weak or no reaction. A strong reaction was found by the use of the periodic acid‐Schiff (PAS) technique, thereby suggesting the presence of glycogen and/or glycoconjugates containing hexose, confirmed by using salivary amylase before PAS, with partial destaining of the slides. Continuing presence of residual staining in these cells suggests the presence of glycoconjugates containing hexose. Cells with nuclei of circular outline and few granules (of different sizes) were found in type II acini, 72 h after collection. Type I acini presented wide lumina and walls composed of larger numbers of cells of cubic to cylindrical shape. The pronounced degranulation shown in this study over the course of the feeding cycle was associated with the release of substances for oviposition. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号