首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)对两种尼龙6树脂增韧改性,制备了不同增韧剂含量的增韧尼龙6材料。通过力学性能测试和SEM研究了增韧剂质量分数对其力学性能的影响,观察了POE-g-MAH/尼龙6复合材料冲击断面形貌。结果表明,随着增韧剂含量的增加,尼龙6的韧性显著提高,强度下降;且随着增韧剂的增多,在尼龙基体中形成有效的增韧剂聚集相起到改善韧性的作用;在两种流动性差异较大的尼龙6基体中,POE-g-MAH均表现优异的增韧效果。  相似文献   

2.
通过应用偏光显微镜、广角X射线衍射、差示扫描量热(DSC)等手段分析和表征了PP/PA6/nano-CaCO3聚丙烯三元复合材料共混体系各组分对其结晶性能的影响。研究发现,PA6、nano-CaCO3对改性聚丙烯复合材料均有诱导成核结晶的作用,加入nano-CaCO3的复合材料的诱导结晶作用要高于加入PA6的复合材料,同时复合材料的结晶温度和结晶速率得到提高。改性后的复合材料结晶度都有不同程度的下降,其中PP/PA6/POE-g-MAH的结晶度为31.83%,PP/PA6/nano-CaCO3/POE-g-MAH的为33.83%。  相似文献   

3.
利用乙二胺功能化石墨烯(GS-EDA)为纳米填料,马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)弹性体为增韧剂,经熔融共混法制备了PP/POE-g-MAH/GS-EDA纳米复合材料。并采用红外光谱(FTIR)、扫描电子显微镜(SEM)、示差扫描量热仪(DSC)、热失重分析(TGA)、力学性能、热变形温度和熔融指数测试分别对填料和所得纳米复合材料的结构和性能进行了测试和表征。研究表明,EDA已成功接枝于石墨烯的表面上;POE-g-MAH的酐基与GS-EDA的氨基发生了作用改善了共混体系的界面相容性并促进了GS-EDA在PP基体中的分散性。当GS-EDA含量为0.5%(质量分数)时,复合材料的拉伸强度、弹性模量和冲击强度分别较PP/POE-g-MAH提高了25.2%、32.5%和26.9%,此时复合材料的综合力学性能也最好。添加GSEDA提高了复合材料的结晶温度、熔融温度和结晶度。GS-EDA的加入使PP/POE-g-MAH/GS-EDA复合材料的热稳定性提高,而熔融指数逐渐降低。  相似文献   

4.
尼龙6/埃洛石纳米管纳米复合材料的制备与性能   总被引:2,自引:0,他引:2  
通过熔融共混制备了尼龙-6(PA6)/埃洛石纳米管(HNTs)纳米复合材料.研究了HNTs含量对PA6/HNTs纳米复合材料微观形态、力学性能、结晶行为的影响.结果表明,在熔融共混条件下,HNTs不经过任何表面处理即可以纳米尺度均匀地分散于PA6基体中.随着HNTs含量的增加,纳米复合材料的弯曲强度和弯曲模量显著提高.DSC结果显示HNTs的存在起到了成核剂的作用,提高了PA6的结晶温度.HNTs份数少时能提高PA6/HNTs纳米复合材料的结晶度,份数多时会使其结晶度下降和生成不稳定的晶体.  相似文献   

5.
以聚磷酸铵(APP)、季戊四醇(PER)组成的膨胀阻燃剂(IFR)为主阻燃剂,有机蒙脱土(OMMT)为协效阻燃剂,马来酸酐接枝聚烯烃弹性体(POE-g-MAH)为增韧剂,以聚酰胺6(PA6)为聚合物成炭剂,采用熔融共混法制备了PP/PA6/POE-g-MAH/IFR/OMMT阻燃复合材料,并研究了PA6对PP阻燃复合材料阻燃性和力学性能的影响。通过极限氧指数(LOI)、垂直燃烧、热重分析、扫描电子显微镜和力学性能测试等手段对PP阻燃复合材料进行了测试与表征。结果表明:成炭剂PA6的加入,可显著地提高PP阻燃复合材料的阻燃性能,当PA6含量为5%时,PP阻燃复合材料的LOI由原来不含PA6时的25.5%提高到了30.0%,垂直燃烧等级由原来的无等级提高到了UL-94 V-0级,且随着PA6含量的进一步增加,LOI在逐渐增大。但PA6的加入,会使PP阻燃复合材料的力学性能下降。  相似文献   

6.
采用熔融方法制备了PA 6/POE/粘土纳米复合材料.PA 6/POE/粘土纳米复合材料具有良好的力学性能,其缺口冲击强度比PA 6有显著提高.研究结果表明,有机粘土剥离于PA 6基体中,POE相以岛状结构均匀分散于PA 6基体中;PA 6/POE/粘土纳米复合材料的储能模量比PA 6的低,并且随着有机粘土含量的增加而降低.PA 6/POE/粘土纳米复合材料的玻璃化转变温度(Tg)随着粘土含量的增加而升高,具有良好的热稳定性.  相似文献   

7.
通过两段式聚合法制备共聚酰胺PA6-66,然后采用熔融共混得到碳纤维增强PA6-66复合材料(CF/PA6-66).对复合材料的断面形貌、热性能、结晶性能、非等温结晶动力学、熔体流变性、力学性能和动态力学性能进行了分析.差示扫描量热(DSC)和热重分析结果表明,CF/PA6-66复合材料的熔点约为190℃,分解温度在376℃以上.DSC和X射线衍射分析表明,CF的加入加快了聚合物的结晶速率,促进γ晶型的形成.力学性能和熔体流变性能测试结果表明,随着CF含量的增加,复合材料的拉伸强度、弯曲强度与缺口冲击强度均先升高后降低,当CF含量为20%时,CF/PA6-66复合材料的拉伸强度与弯曲强度分别为95.54 MPa和121.42 MPa,相比纯PA6-66分别提升了82.26%和81.17%,同时其黏流活化能仅为35.43 kJ/mol.  相似文献   

8.
以枝化剂为超支化聚酰胺6(PA6)的引发剂,配以含有端羧基官能团的有机改性剂改性的有机蒙脱土(O-MMT),经原位开环接枝聚合制备了O-MMT/超支化PA6复合材料。通过FTIR和TEM表征了超支化PA6与O-MMT的接枝情况以及O-MMT在基体中的分散形态。研究了O-MMT对超支化PA6结晶性能、熔体流动性能和力学性能的影响。结果表明:O-MMT呈剥离态和插层态分散于超支化PA6基体中,且与PA6分子链段产生化学键合,形成网络交联结构。网络交联结构使O-MMT/超支化PA6复合材料与超支化PA6相比熔体流动指数急剧下降。另外,O-MMT使超支化PA6的α晶型消失,且使仅有γ晶型的超支化PA6的结晶度降低。但随O-MMT 含量增加,O-MMT/超支化PA6复合材料的强度逐步提高,拉伸强度从38.4 MPa提高至60.8 MPa。复合材料的韧性也得到大幅度提高,断裂伸长率从2.1%提高至70.1%,无缺口冲击强度从20.3 kJ/m2急剧提高至291.8 kJ/m2。   相似文献   

9.
白炭黑和mPE增韧PP竹塑复合材料的性能及其机理   总被引:1,自引:0,他引:1  
本研究以60目竹纤维粉为填充材料,聚丙烯为塑料基体,硅烷为偶联剂,分别以不同含量无机粒子白炭黑和弹性体茂金属聚乙烯(mPE)为增韧剂,模压成型制备了竹塑复合材料。并对竹塑复合材料力学性能和吸水性能进行测试,对比了不同增韧剂的增韧效果。结果表明:当白炭黑添加量为6%时,复合材料的冲击强度、弯曲强度、拉伸强度分别提高99%、424%和114%,吸水率提高41%;当mPE添加量为4%时,复合材料的冲击强度、弯曲强度、拉伸强度分别提高139%、168%和151%,吸水率降低了41%。白炭黑和mPE对PP竹塑复合材料均具有较好的增韧效果,综合考虑力学性能和吸水性能,mPE是PP竹塑复合材料较理想的冲击改性剂。结合多种测试结果表明:添加的增韧剂是通过与基体材料进行化学反应降低复合材料内部极性而实现增强增韧。  相似文献   

10.
采用熔融共混法制备了PA1010/纳米橡胶/POE-g-MAH共混物,测试了共混材料的力学性能,用DSC法研究了熔融和结晶行为.结果表明,共混物的冲击强度显著提高,在纳米橡胶质量含量为10%时达到极大值.纳米橡胶并未降低PA1010的拉伸强度,加入POE-g-MAH后略有降低.共混物的熔融过程呈现双峰,纳米橡胶的加入提高了高温峰的熔融焓.纳米橡胶促进了共混物结晶峰向高温区移动.  相似文献   

11.
刘旭  徐海  徐立新  张宏  周琼 《材料工程》2021,49(4):128-134
通过硝酸酸化处理及尼龙溶液浸渍上浆处理对碳纤维(CF)进行表面改性,制备高强度、高模量,同时具有低熔指和优异加工性能的CF增强尼龙6(PA6)复合材料。采用扫描电镜(SEM)、差示扫描量热仪(DSC)和熔融指数仪等方法,对复合材料的微观结构、力学性能和结晶行为进行测试和表征。结果表明,经过PA6溶液浸渍上浆处理后的CF表面形成了一层PA6薄膜覆盖层,大大增强了CF与PA6基体的结合力,改善了CF的分散性,提升了复合材料整体的强度与模量,改性CF加入量为8%(质量分数)时复合材料拉伸强度提升80.8%,弹性模量提升513.9%。进一步对复合材料结晶行为的分析表明,改性CF的加入能够促进PA6由γ晶型向更稳定的α晶型转变,提高其结晶温度及结晶速率,使复合材料的结晶更加均匀、完善,从而提高体系黏度,降低复合材料熔融指数,显著提升了复合材料的加工性能。  相似文献   

12.
以再生高密度聚乙烯(HDPE)、沙柳木粉和废轮胎胶粉为原材料,含硫偶联剂Si69为界面相容剂,采用模压法制备木粉/橡胶-塑料三元复合材料。考察Si69对木粉/橡胶-塑料三元复合材料力学性能及耐热性能的影响,并采用FTIR和SEM分析Si69改性前后废轮胎胶粉的表面特性及木粉/橡胶-塑料三元复合材料的微观断面形貌。结果表明:Si69与废轮胎胶粉发生了化学反应。当Si69添加量为5wt%时,木粉/橡胶-塑料三元复合材料的界面结合较佳,力学性能及耐热性能较优,其中弯曲强度、弯曲模量、拉伸强度较未添加Si69的木粉/橡胶-塑料三元复合材料分别提高了13.85%、7.24%和6.63%;维卡软化温度和热变形温度较未添加Si69的木粉/橡胶-塑料三元复合材料分别提高了6.95℃和8.70℃,Si69可在一定程度上提高木粉/橡胶-塑料三元材料的耐热性能。Si69添加量为7wt%时,木粉/橡胶-塑料三元复合材料的缺口冲击强度可达到3.99 k·Jm-2。   相似文献   

13.
通过熔融共混法制备了不同CaCl2质量分数的CaCl2/环氧树脂(E51)/尼龙6(PA6)复合材料,利用DSC、流变仪、FTIR和电子拉伸机等研究了不同CaCl2质量分数下CaCl2/E51/PA6复合材料结晶行为及其力学性能,并研究了其受限机制。力学性能结果表明,随着CaCl2质量分数的增加,CaCl2/E51/PA6复合材料拉伸强度呈现出先增大后减小的趋势,当CaCl2质量分数为3%时,复合材料拉伸强度达到最大值82.67 MPa,是纯PA6的拉伸强度(60.5 MPa)的1.366倍,而结晶行为结果表明,增加CaCl2的质量分数,CaCl2/E51/PA6复合材料的成核温度、晶体生长温度、熔融温度及玻璃化转变温度均向低温方向移动,成核密度和成核速率也逐渐减小,结晶能力下降,结晶度由原来25.22%变为9.90%。  相似文献   

14.
利用LiCl改性尼龙6 (PA6),并将其与木粉熔融共混制备了木粉/低熔点PA6复合材料,通过DSC法研究了木粉/低熔点PA6复合材料的非等温结晶动力学行为。结果表明,LiCl降低了PA6的熔点、结晶温度、结晶度和结晶速率,提高了PA6的结晶活化能。木粉是良好的成核剂,能够加快PA6的结晶速率,但却降低了其结晶度。通过Mo法分析木粉/低熔点PA6复合材料的非等温结晶动力学,结果表明,与纯PA6和木粉/PA6复合材料相比,低熔点PA6的F(T)值(表征聚合物结晶快慢参数)最大,LiCl提高了PA6在单位结晶时间内达到一定结晶度时所需的冷却速率,而木粉则与之相反。   相似文献   

15.
使用马来酸酐(MAH)对芳纶纤维(AFs)进行刻蚀处理,以期改善其与尼龙6(PA6)的界面相容性,进而提高AFs/PA6复合材料的力学性能。将不同时间梯度处理后的AFs与PA6经均匀共混、注塑制成AFs/PA6复合材料标准试样。采用FE-SEM、XPS、XRD和DSC研究了AFs表面形貌和元素含量以及AFs/PA6复合材料的冲击断面形貌、晶型、晶粒和结晶度。结果表明:经过3 h的刻蚀,AFs表面粗糙程度最大且表面含氧量最高。刻蚀AFs的加入有利于PA6晶粒细化并且形成α 晶型。相对于纯PA6,AFs/PA6复合材料试样的内部更易形成α 晶型,同时结晶度也得到提高。加入经表面处理的AFs有利于提高AFs/PA6复合材料的拉伸强度和弯曲强度,当加入刻蚀时间为3 h的AFs时,AFs/PA6复合材料的力学性能达到最佳。   相似文献   

16.
采用SEM、TEM、DSC及材料力学性能实验方法研究了马来酸酐 ( MAH ) 接枝乙烯-辛烯共聚物弹性体 ( POE ) 对PA66/POE共混材料形态、微结构及力学性能的影响。结果表明:热引发官能化POE产物 ( POE-g-MAH ) 可显著改善PA66/POE共混材料的相容性,使材料分散相尺寸减小,分布均匀,且材料缺口冲击强度显著增大。实验发现,PA66/POE-g-MAH共混材料分散相的弹性体颗粒内部存在较多份量的有序结构,材料中的分散相颗粒具有明显促进结晶的作用,此作用引起PA66基体结晶温度增加,结晶度增大,并在分散相质量分数为15% 的脆韧转变条件下,达到极大值。试样熔体的冷却速率越快,则此种促进结晶的作用就越明显。   相似文献   

17.
为了制备出一种可用于长段承重骨的修复、具有优异力学性能的复合材料,利用含量为30wt%和45wt%的石英纤维(QF)分别增强聚酰胺46(PA46),挤塑得到QF/PA46复合材料。采用燃烧实验、FTIR、XRD、SEM及DSC等对复合材料的结构、界面、力学性能和非等温结晶行为进行研究。结果表明:QF在复合材料中分布均匀且没有明显的取向,QF与PA46基体之间形成了氢键的结合;材料的结晶度随着QF含量的增加而降低,QF的加入提高了PA46的结晶速率,起到了异相成核剂作用,但是QF与PA46间的界面作用阻碍了PA46分子的有序排列,降低了结晶度;随着降温速率的增加,PA46和QF/PA46复合材料的结晶峰都从高温向低温方向移动,结晶的范围随降温速率的增加而变宽。力学性能测试结果表明:随着QF含量的增加,QF/PA46复合材料的拉伸强度和弯曲强度都显著增加,且与人体自体骨组织的力学强度相接近。复合材料的细胞实验结果(采用L929成纤维细胞)表明:2种QF含量的QF/PA46复合材料细胞毒性为1级,具有较好的生物安全性。QF/PA46复合材料可以应用于临床的长承载骨修复等相关领域。  相似文献   

18.
采用超细聚四氟乙烯(PTFE)粉末作为减摩功能填料, 碳纤维(CF)作为增强材料, 制备了CF-PTFE/PA6复合材料; 利用60Co-γ射线对该复合材料进行了辐射改性, 对复合材料的力学性能和摩擦学性能进行了研究, 并采用SEM观察了该复合材料冲击断面的表面形貌。结果表明: 添加8%的PTFE和13%的CF的CF-PTFE/PA6复合材料不仅具有较好的力学强度和摩擦学性能, 而且经过120 kGy辐射处理后, 其弯曲强度、拉伸强度和冲击强度分别提高了9.9%、7.9%和11.7%。   相似文献   

19.
纳米Al2O3对尼龙6结晶性能的影响   总被引:2,自引:0,他引:2  
采用硅烷偶联剂KH-560对纳米氧化铝(nano-Al2O3)进行表面处理后与尼龙6(PA6)熔融共混制备PA6/nano-Al2O3复合材料,用扫描电镜(SEM)观察了材料断面形貌,借助差示扫描量热仪(DSC)研究了原料配比及降温速率对PA6/nano-Al2O3复合材料结晶性能影响。结果表明,nano-Al2O3在PA6结晶过程中起异相成核作用,限制了PA6分子链运动,使复合材料玻璃化转变温度及结晶度提高,非等温结晶过冷度降低,结晶速率加快;材料结晶温度、结晶焓、结晶度随降温速率增加而下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号