首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient liquid phase bonding (TLP) on AA 6082 samples were performed under ambient non‐vacuum conditions, which was possible by a suitable pre‐treatment. This treatment involves a zincate treatment followed by copper plating, which is a common industrial process and can be performed in large batches. This treatment allows to remove the natural aluminium oxide layer and to protect the aluminium surface from excessive oxidation. Different bonding conditions were investigated and showed the feasibility of the transient liquid phase bonding process for AA 6082. Energy dispersive X‐ray spectroscopy (EDX) investigations showed that the isothermal solidification is already terminated after 5 min. The microstructure of the bonding zone showed no metallurgical discontinuity such as eutectic microstructure or intermetallic Al–Cu phases. However the microstructure shows numerous voids with a size of approximately 30 µm in the bonding zone. It is assumed that these voids were formed during the bonding process due to solidification shrinkage and the presence of interfacial oxide layers. The transient liquid phase bonded samples that were mechanically tested under tensile load showed an average strength of approximately 270 MPa, the minimum yield strength required for the base material according to EN 754‐2 is 255 MPa. Due to the notch effect of the voids, the tensile sample failed under forced fracture and showed no plastic deformation.  相似文献   

2.
Titanium has been successfully joined to aluminium nitride AlN at a temperature as low as 795 °C, using Ag–Cu Cusil® commercial braze alloy. While reactive wetting and spreading proceeds at the AlN/braze alloy interface, chemical interactions develop at the titanium side rendering possible isothermal solidification of the joint. The determining factor in the solidification process is the fast formation of TiCu4 crystals by heterogeneous nucleation and growth in the liquid phase. As a consequence, the braze alloy is depleted in Cu and solid Ag precipitates. After annealing, the re-melting temperature of the resulting joint can be increased up to about 910 °C which is nearly 130 °C higher than the melting point of the starting braze alloy.  相似文献   

3.
An attempt was made of using a liquid phase sintered alloy, which will be a liquid phase coexisting with solid particles at the bonding temperature, as an interlayer for bonding metals. With an aim of revealing the fundamental features of this modified TLP bonding, investigated were the kinetics concerned with the isothermal solidification process and the growth of solid particles in Fe-4.5wt%P and Fe-1.16wt%B interlayers for bonding pure iron. The movement of the bond interface was linearly dependent on t 1/2 with higher slope than expected in the normal TLP bonding. The higher slope is attributed to the contribution of the solid particles distributed in the interlayer. The solid particles have shown no growth. However, when pure Fe particles are allowed to coexist with the liquid of equilibrium composition, they grows very rapidly. Discussion was made on the growth kinetics of the pure Fe particles.  相似文献   

4.
Abstract

The transient liquid phase (TLP) bonding of particle reinforced aluminium metal matrix composites (MMCs) using copper interlayers often results in the segregation of SiC particles to the bond region, and this has the effect of producing bonds with poor mechanical strengths. In this preliminary study, the TLP bonding of a 2124 aluminium alloy MMC is investigated using nickel interlayers, and the initial results show that good bonds are produced with no effect on the SiC dispersion in the matrix. The absence of segregation is attributed to the high diffusivity of the nickel in the aluminium MMC, which produces rapid isothermal solidification at the bonding temperature. Bond shear tests show that near parent metal strengths are possible when thin nickel interlayers are used, and failure occurs at the MMC/bond interface. When thick interlayers are used, failure is predominately through the centre of the bondline.  相似文献   

5.
Abstract

Microduplex stainless steels are two phase alloys which show excellent corrosion resistance and toughness. In order to join these special steels, fusion welding processes are normally used and a second post-weld heat treatment is necessary to regain the original ferrite to austenite ratio. In this study, transient liquid phase diffusion bonding was used to join a 2205 duplex stainless steel with the aid of amorphous interlayers. The research compares a Ni–B–Si ternary system with that of an Fe–B–Si interlayer, and compositional, microstructural and mechanical assessment was used to determine the quality of the bonds produced. These preliminary results show that the nickel based interlayer stabilises the austenitic phase along the bond length, which hinders grain growth across the joint region. In contrast, the iron based interlayer produces diffusion bonds, which show microstructural and compositional homogeneity across the joint region. Furthermore, mechanical and pitting corrosion tests show that transient liquid phase diffusion bonds can achieve properties similar to those of the parent alloy.  相似文献   

6.
Transient liquid phase bonding processes have been performed to join two carbon steel tubes using Fe96.2B3.8 wt% amorphous ribbons as interlayers. Welding experiments were performed at the temperature T ≈ 1,250 °C for different durations and under pressures of 2, 3 and 4 MPa. From metallographic inspection it is concluded that the bonding process ends in 7.0 min if a pressure of 4 MPa is applied whereas the process results incomplete if less pressure is applied. A 1D model using a finite element method has been developed for the simulation of a transient liquid phase bonding process. This model was applied to the bonding of steel/Fe–B glassy metals/steel. The computed results allow us to understand the role played by the variables involved in the bonding process.  相似文献   

7.
8.
The aim of this study was to apply the transient liquid phase (TLP) bonding technique to low-temperature Sn–Bi-based solders to enable their use in high-temperature applications. The microstructure of the eutectic Sn–Bi solders with and without added Cu particles was investigated with the solders sandwiched between two Cu substrates. The flux of the Cu atoms successfully consumed the Sn phase and resulted in the formation of Sn–Cu intermetallic compounds and a Bi-rich phase in the solder joint. This caused the melting point of the solder joint to increase from 139 to 201 °C. The results of this study show the potential of using low-temperature solders in high-temperature applications. This study also provides new insight into the advantages of using particles in the TLP bonding process.  相似文献   

9.
Abstract

An investigation of microstructural development and structure–property relationships of transient liquid phase (TLP) bonded current generation γ-TiAl alloy, known as Gamma Met PX, is presented. This joining technique employed a composite interlayer consisting of a non-melting constituent (TiAl alloy) and a liquid forming constituent (copper). The microstructures of the bonds, identified using light microscopy and scanning electron microscopy, are correlated with room temperature mechanical performance. These studies suggested that joints can retain properties similar (i.e. >90%) to that of the bulk material when employing a suitable composite interlayer, bonding conditions and post-bond heat treatment. Additionally, comparisons are drawn between wide gap TLP bonding of an earlier generation γ-TiAl alloy, Ti–48Al–2Cr–2Nb (at.-%), and wide gap TLP bonding of Gamma Met PX.  相似文献   

10.
Abstract

Transient liquid phase diffusion bonding has been used to join an oxide dispersion strengthened (ODS) nickel alloy (MA758) using an amorphous metal interlayer with a Ni–Cr–B–Si composition. A microstructural study was undertaken to investigate the effect of parent metal grain size on the joint microstructure after isothermal solidification. The ODS alloy was bonded both in fine grain and recrystallised conditions at 1100°C for various hold times. The work shows that the final joint grain size is independent of the parent alloy grain structure and the bonding time. However, when the alloy is bonded in the recrystallised condition and given a post-bond heat treatment at 1360°C, the joint grain size increases and a continuous parent alloy microstructure across the joint region is achieved. If MA758 is bonded in the fine grain condition and then subjected to a recrystallising heat treatment at 1360°C, the grains at the joint appear to increase in size with increasing bonding time. The joint grains are generally larger than those produced when the alloy is bonded in the recrystallised condition. The differences in microstructural developments across the joint are discussed in terms of stored strain energy of the parent metal grains.  相似文献   

11.
As-cast Al/Mg2Si metal matrix composite was joined by transient liquid phase diffusion bonding using Cu interlayer at various bonding temperatures and durations. This metal matrix composite contained 15% Mg2Si and was produced through in situ technique by gravity casting. Specific diffusion bonding process was applied as a low vacuum technique. The microstructure of joints consisted of Al-α, CuAl2 and Mg2Si or Al-α and Mg2Si depending on bonding temperature and duration. The maximum shear strength was achieved when samples were bonded at 580 °C for 120 min. Micro-hardness and compositional homogeneity of joints across the bonded interface were improved with increasing the bonding duration at 560 °C and had no significant changes at 580 °C.  相似文献   

12.
Oxide dispersion strengthened (ODS) ferritic superalloys attribute their excellent intermediate and high temperature creep resistant properties to the distribution of an inert oxide, Y2O3 within highly directional and elongated grains. Careful selection of joining techniques is, therefore, of utmost importance so that the parent metal microstructure is not disrupted and is continuous across the bond line. Transient liquid phase (TLP) bonding is a suitable technique which has been used to join the ferritic superalloys MA957, MA956 and PM2000 using an amorphous foil based on an Fe-B-Si composition. To further minimize disruption to the parent alloy microstructure at the bond line, thin sputter coats based on the Fe-B-Si composition have also been used successfully for TLP bonding. Results have shown a boron-induced secondary recrystallized zone at the bond line in MA957 which acts as a barrier to further grain growth across the bond line on subsequent zone annealing. Differential scanning calorimetry shows that this recrystallization is triggered at 200 °C below the usual recrystallization temperature during heat treatment and occurs only when the metal filler melts and there is a free flux of boron into the base metal. Texture measurements show that the boron-induced recrystallization is of the same nature as the recrystallization produced by heat treatment but possesses a stronger directional 110 fibre texture. In contrast, grain growth across the bond line could be achieved in TLP bonds produced in MA956. However, a similar heat treatment for PM2000 produced simultaneous but independent secondary recrystallization both at the joint and in the bulk alloy. This difference in behaviour between these two similar alloys is attributed to differences in their thermomechanical processing.  相似文献   

13.
Transient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented.  相似文献   

14.
Transient liquid phase bonding processes have been performed to join two carbon steel tubes using Fe96.2B3.8 wt% amorphous ribbons as interlayer. Welding experiments were performed at the temperature T ≈ 1,250 °C for different durations and under pressures of 0.8, 2, 3, and 4 MPa. From metallographic inspection, it is concluded that the bonding process ends in 7.0 min if a pressure of 4 MPa is applied, whereas the process results incomplete if less pressure is applied. The metallurgical aspects of these joints are analyzed. Plastic deformation at the joint is observed. Micrographs show that if pressure increases, the amount of pro-eutectoid ferrite decreases, therefore, an increase in the hardenability of the steel occurs. This fact could be due to the effect of the compression plastic deformation that prevails at the joint zone.  相似文献   

15.
Induction brazing of Inconel 718 to Inconel X-750 using Ni-7Cr-3Fe-3.2B-4.5Si (wt.-%) foil as brazing filler metal was investigated in this paper. Brazing was conducted at the temperature range 1373–1473 K for 0–300 s in a flow argon environment. Both interfacial microstructures and mechanical properties of brazed joints were investigated to evaluate joint quality. The optical and scanning electron microscopic results indicate that good wetting existed between the brazing alloy and both Inconel 718 and Inconel X-750. Microstructures at joint interfaces of all samples show distinct multilayered structures that were mainly formed by isothermal solidification and following solid-state interdiffusion during joining. The diffusion of boron and silicon from brazing filler metal into base metal at the brazing temperature is the main controlling factor pertaining to the microstructural evolution of the joint interface. The element area distribution of Cr, Fe, Si, Ni and Ti was examined by energy dispersive X-ray analysis. It was found that silicon and chromium remain in the center of brazed region and form brittle eutectic phases; boron distribution is uniform across joint area as it readily diffuses from brazing filler metal into base metal. The influence of heating cycle on the microstructures of base material and holding time on the mechanical properties of brazed joint were also investigated.  相似文献   

16.
Diffusion bonding of ceramics   总被引:5,自引:0,他引:5  
Diffusion bonding of ceramics to ceramics and to metals is reviewed, with primary emphasis on the effects of operational variables on joint strength. These include principal bonding parameters such as temperature, time and pressure. In addition, the influence of atmosphere, mismatch in coefficient of thermal expansion between the joint members, interlayers and surface structure are discussed. The mechanisms involved, i.e. plastic deformation, various forms of diffusion and power law creep, imply that temperature is the most important process parameter. Finally, a survey of variables employed in bonding of different ceramic-metal and ceramic-ceramic joints is included as a guideline for selection of materials and parameters.  相似文献   

17.
Diffusion in material of inhomogeneous composition can induce phase changes, even at a constant temperature. A transient liquid phase (TLP), in which a liquid layer is formed and subsequently solidifies, is one example of such an isothermal phase change. This phenomenon is exploited industrially in TLP bonding and sintering processes. Successful processing requires an understanding of the behaviour of the transient liquid layer in terms of both diffusion-controlled phase boundary migration and capillarity-driven flow. In this paper, a numerical model is presented for the simulation of diffusion-controlled dissolution and solidification in one dimension. The width of a liquid layer and time to solidification are studied for various bonding conditions. A novel approach is proposed, which generates results of a high precision even with coarse meshes and high interface velocities. The model is validated using experimental data from a variety of systems, including solid/solid diffusion couples.  相似文献   

18.
A transient liquid phase (TLP), in which a liquid layer is formed and subsequently solidifies, and other diffusion-controlled phase changes are generally associated with moving phase-change interfaces. Both fixed and variable grid discretization models have been formulated to investigate these diffusion-controlled problems. However, all numerical efforts to date have employed one of the approaches explicitly to track the moving interfaces across which there exist step changes in concentrations. In this article, the fixed-grid source-based method originally developed to simulate the temperature fields for melting-solidification phase change processes has been adopted to simulate diffusion-controlled dissolution and solidification. This method solves a unique diffusion equation for the different phases and the moving interfaces using implicit time integration. Compared with previously developed models, it is not only simpler in numerical formulation and procedure, but also more convenient to extend to many phases and high-dimensional problems. We report here the detailed formulation of the relevant equations, and compare and validate the model using experimental data and previous modelling predictions for several systems available from the existing literature.  相似文献   

19.
The effect of process variables on the microstructure and properties of transient liquid phase (TLP) bonded IN-738LC superalloy was investigated using AMS 4776 filler metal. Continuous centerline eutectic phases, characterized as nickel-rich and chromium-rich borides, were observed at the joints with incomplete isothermal solidification. The eutectic width decreased with the increase of holding time and the increase in initial gap size resulted in thicker eutectic width in the samples bonded at the same temperature and for equivalent holding times. In contrast to the conventional expectation of the increase in the rate of isothermal solidification with the increase of temperature, rate decrease was observed with the increase of temperature to 1150 °C. The investigations demonstrated that low isothermal solidification rate was not only due to the enrichment of liquid phase with the base alloying elements such as Ti but also because of the reduction of solid solubility limit of B in the base metal contributed to the reduction of isothermal solidification rate. Microhardness and shear strength tests were carried out in order to investigate mechanical properties of the bonded samples. In the bonding condition in which isothermal solidification did not completely occur, eutectic constituent with the highest hardness in the bond region was the preferential failure source. The results showed that homogenized joints had the highest shear strength.  相似文献   

20.
Transient liquid phase diffusion bonding of an extruded 6061-13 vol.% SiCp composite at 560 °C, 0.2 MPa, using a 50-μm thick copper powder interlayer with 20 min, 1 h, 2 h, 3 h, and 6 h hold times has been investigated. The isothermal solidification and homogenization of the bond region occurred with 3 and 6 h holding, respectively. During isothermal solidification, smaller SiC particles (size range: 11–13 μm) were pushed by the moving solid/liquid interface and segregated around the bond centerline, whereas bigger SiC particles (size range: 24–33 μm) were engulfed. During isothermal solidification, the bigger SiC particles locally hindered the solidification front movement causing grain refinement. The kinetics of isothermal solidification, representing the displacement of the solid/liquid interface (y, in μm) as a function of time (t, in s), followed a power-law relationship: y = 35 t 0.22. According to this kinetic equation, the effective diffusivity of copper in composite system was found to be about 105 times higher than the lattice diffusivity indicating the dominance of short circuit diffusion through the defect-rich particle/matrix interface. Ultrasonic investigation of the bond interface indicated that the signal attenuation was strongly correlated with the width of the segregated layer-a feature that decreased with the increasing bonding time. The completion of isothermal solidification was indicated by a sharp rise in the received signal amplitude with a negligible attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号