首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a single-input single-output (SISO) neural generalized predictive control (NGPC) was applied to a three-joint robotic manipulator with a cubic trajectory and random disturbances. The SISO generalized predictive control (GPC) was also used for comparison. Modelling of the dynamics of the robotic manipulator was carried out by using the Lagrange–Euler equations. The frictional effects, random disturbance, carrying and falling load effects were added to the dynamics model. The cubic trajectory principle is used for position reference and velocity reference trajectories. A simulation program was prepared by using Delphi 5.0. All computations for the manipulator dynamics model, GPC_SISO, and NGPC_SISO were done on a PC with 733 MHz CPUs using this program. The parameter estimation algorithm used in the GPC_SISO is Recursive Least Squares. The minimization algorithm used in the NGPC_SISO is Newton–Raphson. According to the simulation outcome, the results from the NGPC_SISO algorithm were better than those from the GPC_SISO algorithm. And these results showed also that the NGPC_SISO reduced the influence of the load changes and disturbances. This means that the NGPC_SISO algorithm combines the advantages of predictive control and the neural network.  相似文献   

2.
The aim of this paper was to propose a recurrent neural network-based predictive controller for robotic manipulators. A neural network controller for a six-joint Stanford robotic manipulator was designed using the generalized predictive control (GPC) and the Elman network. The GPC algorithm, which is a class of digital control method, requires long computational time. This is a disadvantage in real-time robot control; therefore, the Elman network controller was designed to reduce processing time by avoiding the highly mathematical and computational complexity of the GPC. The main reason for choosing the Elman network, amongst several neural network algorithms, was that the presence of feedback loops have a profound impact on the learning capability of the network. The designed neural network controller was able to recover quickly because of its significant generalization capability, which allowed it to adapt very rapidly to changes in inputs. The performance of the controller was also shown graphically using simulation software, including the dynamics and kinematics of the robot model.  相似文献   

3.
直线电机的非参数模型直接自适应预测控制   总被引:1,自引:0,他引:1  
将基于紧格式线性化的非参数模型直接自适应预测控制方法应用到直线电机速度和位置控制中.控制器的设计是直接基于伪偏导数的估计和预报,而伪偏导数信息则足通过参数估计算法和预报算法利用I/O数据在线导出.仿真演示了该方法对电机这种不确知动态非线性系统的有效性和抗干扰能力.  相似文献   

4.
李桂秋  陈志旺 《计算机应用》2012,32(6):1707-1712
为了使机械手系统在含有模型不确定项时具有良好的跟踪性能和较强的抗干扰能力,提出了一种间接自适应鲁棒预测控制。首先,针对机械手模型设计出非线性鲁棒预测控制器;然后,基于三次样条函数逼近控制律中因模型不确定性产生的未知项,并在控制律中引入一个D-控制项抑制外部干扰。理论证明了所设计的控制器能够使跟踪误差收敛到原点。仿真验证了所提方法的有效性。  相似文献   

5.
特征结构下多变量预测控制系统的闭环反馈结构及其应用   总被引:2,自引:0,他引:2  
文献[1]把多变量频域设计方法和单变量预测控制结合起来,提出了在特征结构下的多变量预测控制算法。本文在此基础上提出了特征结构下多变量预测控制系统的闭环反馈结构。利用此反馈结构不仅可有效地减少多变量预测控制算法的计算量及所需的存贮空间,而且还可以方便地判别此类预测控制系统的闭环稳定性。文中以火力发电厂中带汽-汽换热器的20万千瓦火电机组汽温系统为例进行了预测控制的仿真,仿真结果表明,用本文所提出方法设计的多变量预测控制系统,具有良好的控制效果。  相似文献   

6.
Adaptive-Predictive Control of a Class of SISO Nonlinear Systems   总被引:5,自引:0,他引:5  
In this paper, an adaptive-predictive control algorithm is developed for a class of SISO nonlinear discrete-time systems based on a generalized predictive control (GPC) approach. The design is model-free, based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using a recursive least squares type of identification algorithm. The proposed control is especially useful for nonlinear systems with vaguely known dynamics. Robust stability of the closed-loop system is analyzed and proven in the paper. Simulation and real-time application examples are provided for real nonlinear systems which are known to be difficult to model and control.  相似文献   

7.
A neural network (NN)-based nonlinear predictive control (NPC) is described for control of turbine power with variation in gate position. The studied plant includes the tunnel, surge tank and penstock effect dynamics. Multilayer perceptron neural network is chosen to represent a neural network nonlinear autoregressive with exogenous signal model of hydro power plant. With the said NN model configuration, quasi-Newton and Levenberg–Marquardt iterative optimization algorithms are applied in order to determine optimal predictive control parameters. The controlled response is simulated on different amplitude step function and trapezoidal shape reference signal. The study also discusses comparison with an approximate predictive control approach, being linearized around operating points. It is shown that NPC strategy gives impressive results in comparison to the approximated one.  相似文献   

8.
针对具有参数不确定性和未知外部干扰的机械手轨迹跟踪问题提出了一种多输入多输出自适应鲁棒预测控制方法. 首先根据机械手模型设计非线性鲁棒预测控制律, 并在控制律中引入监督控制项; 然后利用函数逼近的方法逼近控制律中因模型不确定性以及外部干扰引起的未知项. 理论证明了所设计的控制律能够使机械手无静差跟踪期望的关节角轨迹. 仿真验证了本文设计方法的有效性.  相似文献   

9.
The controller design for the robotic manipulator faces different challenges such as the system's nonlinearities and the uncertainties of the parameters. Furthermore, the tracking of different linear and nonlinear trajectories represents a vital role by the manipulator. This paper suggests an optimal design for the nonlinear model predictive control (NLMPC) based on a new improved intelligent technique and it is named modified multitracker optimization algorithm (MMTOA). The proposed modification of the MTOA is carried out based on opposition-based learning (OBL) and quasi OBL approaches. This modification improves the exploration behavior of the MTOA to prevent it from becoming trapped in a local optimum. The proposed method is applied on the robotic manipulator to track different linear and nonlinear trajectories. The NLMPC parameters are tuned by the MMTOA rather than the trial and error method of the designer. The proposed NLMPC based on MMTOA is compared with the original MTOA, genetic algorithm, and cuckoo search algorithm in literature. The superiority and effectiveness of the proposed controller are confirmed to track different linear and nonlinear trajectories. Furthermore, the robustness of the proposed method is emphasized against the uncertainties of the parameters.  相似文献   

10.
具有柔性关节的轻型机械臂因其自重轻、响应迅速、操作灵活等优点,取得了广泛应用;针对具有柔性关节的机械臂系统的关节空间轨迹跟踪控制系统动力学参数不精确的问题,提出一种结合滑模变结构设计的自适应控制器算法;通过自适应控制的思想对系统动力学参数进行在线辨识,并采用Lyapunov方法证明了闭环系统的稳定性;仿真结果表明,该控制策略保证了机械臂系统对期望轨迹的快速跟踪,具有良好的跟踪精度,系统具有稳定性。  相似文献   

11.
Distillation columns are important process units in petroleum refining and need to be maintained close to optimum operating conditions because of economic incentives. Model predictive control has been used for control of these units. However, the constrained optimization problem involved in the control has generally been solved in practice in a piece-meal fashion. To solve the problem without decomposition, the use of a linear programming (LP) formulation using a simplified model predictive control algorithm has been suggested in the literature. In this paper, the LP approach is applied for control of an industrial distillation column. The approach involved a very small size optimization problem and required very modest computational resources. The control algorithm eliminated the large cycling in the product composition that was present using SISO controllers. This resulted in a 2.5% increase in production rate, a 0.5% increase in product recovery, and a significant increase in profit.  相似文献   

12.
本文研究一类单输入单输出非线性系统的预测函数控制问题,这类系统能用有限阶离散Volterra级数模型表示,采用最小二乘法进行参数辨识,并通过求解高次方程得到控制律。针对化工过程蒸馏塔控制系统,通过仿真计算验证了该方法的有效性。  相似文献   

13.
针对机械手臂的非线性特点,提出了基于隶属度函数的多模型预测控制方法。该方法首先根据机械手臂的特点,选择合适的调度变量,将机械手臂的工作空间划分为若干个工作子空间,在每个子空间内的平衡点处对机械手臂进行线性化处理,得到相应的线性子模型,从而得到机械手臂的多模型表示;其次针对每个线性子模型设计局部预测控制器,使其在相应的子空间内达到控制要求;最后选择梯形隶属度函数与局部预测控制器进行加权求和,获得全局多模型预测控制器,以对机械手臂进行控制。仿真结果表明,当机械手臂的工作条件在大范围内变化时,全局多模型预测控制器的控制性能远优于常规PD控制器,达到了预期的控制目的。  相似文献   

14.
A Neural Net Predictive Control for Telerobots with Time Delay   总被引:5,自引:0,他引:5  
This paper extends the Smith Predictor feedback control structure to unknown robotic systems in a rigorous fashion. A new recurrent neural net predictive control (RNNPC) strategy is proposed to deal with input and feedback time delays in telerobotic systems. The proposed control structure consists of a local linearized subsystem and a remote predictive controller. In the local linearized subsystem, a recurrent neural network (RNN) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. The remote controller is a modified Smith predictor for the local linearized subsystem which provides prediction and maintains the desirable tracking performance. Stability analysis is given in the sense of Lyapunov. The result is an adaptive compensation scheme for unknown telerobotic systems with time delays, uncertainties, and external disturbances. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of the proposed control strategy.  相似文献   

15.
为实现对多自由度机械臂关节运动精确轨迹跟踪,提出一种基于非线性干扰观测器的广义模型预测轨迹跟踪控制方法。针对机械臂轨迹跟踪运动学子系统,采用广义预测控制(Generalized Predictive Control,GPC)方法设计期望的虚拟关节角速度。对于机械臂轨迹跟踪动力学子系统,考虑机械臂的参数不确定性和未知外界扰动,利用GPC方法设计关节力矩控制输入,基于非线性干扰观测器方法实时估计和补偿系统模型中的不确定性。在李雅普诺夫稳定性理论框架下证明了机械臂关节角位置和角速度的跟踪误差最终收敛于零的小邻域。数值仿真验证了所提出控制方法的有效性和优越性。  相似文献   

16.
In this paper we present a self-tuning of two degrees-of-freedom control algorithm that is designed for use on a non-linear single-input single-output system. The control algorithm is developed based on the Takagi-Sugeno fuzzy model, and it consists of two loops: a feedforward loop and feedback loop. The feedforward part of the controller should drive the system output to the vicinity of the reference signal. It is developed from the inversion of the T-S fuzzy model. To achieve accurate error-free reference tracking a feedback part of the controller is added. A time-varying error-model predictive controller is used in the feedback loop. The error-model is obtained from the T-S fuzzy model. The T-S fuzzy model of the system, required in the controller, is obtained with evolving fuzzy modelling, which is based on recursive Gustafson-Kessel clustering algorithm and recursive fuzzy least squares. It employs evolving mechanisms for adding, removing, merging and splitting the clusters.The presented control approach was experimentally validated on a non-linear second-order SISO system helio-crane in simulation and real environment. Several criteria functions were defined to evaluate the reference-tracking and disturbance rejection performance of the control algorithm. The presented control approach was compared to another fuzzy control algorithm. The experimental results confirm the applicability of the approach.  相似文献   

17.
We address the sliding mode control design problem for output reference trajectory tracking problems in the special class of MIMO flat systems known as static feedback linearizable systems. We assume unavailable system state components but rely on available inputs and measurable flat outputs. Each controller will largely ignore state and control input couplings by adopting a standard sliding mode controller scheme derived from the SISO case and used this as decoupled input‐to‐flat‐output model. The standard controller arises from a vastly simplified pure integration, additively perturbed, system. The simplified pure integration system controlled trajectories are shown to be time‐scale homotopically equivalent to those of the nonlinear flat system. The basic sliding surface coordinate function design is approached from the perspective of structural integral reconstructors requiring only the inputs and the flat outputs of the system. Integral structural reconstructors were introduced by Fliess et al for the control of linear SISO and MIMO systems, giving rise to the generalized proportional integral control method. Simulations are presented for SISO and MIMO systems and experimental results are reported for a two‐degree‐of‐freedom fully actuated robotic manipulator.  相似文献   

18.
考虑驱动系统动态的机械手神经网络控制及应用   总被引:2,自引:0,他引:2  
针对结构和参数均未知的机械手控制问题, 提出了考虑驱动系统动态的机械手神经网络控制方法, 采用稳定的径向基(Radial basis function, RBF)神经网络辨识机械手未知动态, 而附加的鲁棒控制可以保证存在神经网络的建模误差和外部干扰时系统的稳定性和性能, 并且该方法使机械手闭环系统一致最终有界. 同时开发了基于半实物仿真技术的机械手控制系统, 最后, 将本文方法与经典的PD控制器和自适应控制器在同一机械手平台上进行了实验验证与分析, 实验结果表明该方法具有良好的控制性能.  相似文献   

19.
In this paper, the optimal tracking control for robotic manipulatorswith state constraints and uncertain dynamics is investigated, and a sliding mode-based adaptive tube model predictive control method is proposed. First, utilizing the high-order fully actuated system approach, the nominal model of the robotic manipulator is constructed as the predictive model. Based on the nominal model, a nominal model predictive controller with the sliding mode is designed, which relaxes the terminal constraints, and realizes the accurate and stable tracking of the desired trajectory by the nominal system. Then, an auxiliary controller based on the node-adaptive neural networks is constructed to dynamically compensate nonlinear uncertain dynamics of the robotic manipulator. Furthermore, the estimation deviation between the nominal and actual states is limited to the tube invariant sets. At the same time, the recursive feasibility of nominal model predictive control is verified, and the ultimately uniformly boundedness of all variables is proved according to the Lyapunov theorem. Finally, experiments show that the robotic manipulator can achieve fast and efficient trajectory tracking under the action of the proposed method.  相似文献   

20.
In this paper, a dynamical time-delay neuro-fuzzy controller is proposed for the adaptive control of a flexible manipulator. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity. For a perfect tracking control of the robot, the output redefinition approach is used in the adaptive controller design using time-delay neuro-fuzzy networks. The time-delay neuro-fuzzy networks with the rule representation of the TSK type fuzzy system have better learning ability for complex dynamics as compared with existing neural networks. The novel control structure and learning algorithm are given, and a simulation for the trajectory tracking of a flexible manipulator illustrates the control performance of the proposed control approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号