首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

2.
Observed Performance of Long Steel H-Piles Jacked into Sandy Soils   总被引:1,自引:0,他引:1  
Full-scale field tests were performed to study the behavior of two steel H-piles jacked into dense sandy soils. The maximum embedded length of the test piles was over 40?m and the maximum jacking force used was in excess of 7,000?kN. The test piles were heavily instrumented with strain gauges along their shafts to measure the load transfer mechanisms during jacking and the subsequent period of static load tests. Piezometers were installed in the vicinity of the piles to monitor the pore pressure responses at different depths. The time effect and the effect of installation of adjacent piles were also investigated in this study. The test results indicated that, although both piles were founded on stiff sandy strata, most of the pile capacity was carried by shaft resistance rather than base resistance. This observation implies that the design concept that piles in dense sandy soils have very large base capacity and small shaft resistance is likely to be inappropriate for jacked piles. It was also found that the variation in pore pressures induced by pile jacking was closely associated with the progress of pile penetration; the pore pressure measured by each piezometer reached a maximum when the pile tip arrived at the piezometer level. A nearby pile jacking was able to produce large tensile stresses dominating in the major portion of an installed pile; both the magnitude and distribution of the induced stresses were related to the penetration depth of the installing pile.  相似文献   

3.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

4.
In this research, centrifuge model pile-load tests were carried out to failure to investigate the behavior of large-diameter bored pile groups with defects. The model piles represented cast-in-place concrete piles 2.0?m in diameter and 15?m in length. Two series of static loading tests were performed. The first series of tests simulated the performance of a pile founded on rock and a pile with a soft toe. The second series of tests simulated the performance of three 2×2 pile groups: One reference group without defects, one group containing soft toes, and one group with two shorter piles not founded on rock. The presence of soft toes and shorter piles in the defective pile groups considerably reduced the pile group stiffness and capacity. As the defective piles were less stiff than the piles without defects, the settlements of the individual piles in the two defective pile groups were different. As a result, the applied load was largely shared by the piles without defects, and the defective pile groups tilted significantly. The rotation of the defective pile groups caused large bending moments to develop in the group piles and the pile caps. When the applied load was large, bending failure mechanisms were induced even though the applied load was vertical and concentric. The test results confirm findings from numerical analyses in the literature.  相似文献   

5.
Thirty six tests on model tubular steel piles embedded in sand were carried out in the laboratory to assess the effects of compressive load on uplift capacity of piles considering various parameters. The model piles were of 25 mm outside diameter and 2 mm wall thickness. The soil–pile friction angles were 21 and 29° in loose and dense conditions of sand. The piles were embedded in sand for embedment length/diameter ratios of 8,16, and 24 inside a model tank. They were subjected to a static compressive load of 0, 25, 50, 75, and 100% of their ultimate capacity in compression and subjected to pull out loading tests. The experimental results indicated that the presence of the compressive load on the pile decreases the net uplift capacity of a pile and the decrease depends on the magnitude of the compressive load. A logical approach, based on the experimental results, has been suggested to predict the net uplift capacity of a pile considering the presence of compressive load.  相似文献   

6.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

7.
The behavior of pile foundations subjected to horizontal loading is typically evaluated using horizontal load tests. Although load tests are valuable to understand site-specific soil-structure interaction phenomena, validated predictive methods are also useful during the design phase. In this study, the results from horizontal load tests are compared with methods which predict the horizontal bearing capacity of piles using in situ measurements of soil behavior. Specifically, several horizontal load tests were performed in order to evaluate the behavior of two 12-m long Strauss piles and four bored piles with similar length, all installed in a lateritic soil profile. Two prediction methods were evaluated using p-y curves computed from the results of Marchetti’s dilatometer test (DMT) results. The predictive methods using the p-y curves from the DMT showed good agreement with the behavior observed in the pile loading test.  相似文献   

8.
A large-scale field-monitoring program for studying residual forces in long-driven piles is described. Eleven steel H-piles, 34.2–59.8?m in embedded length, were instrumented with vibrating-wire strain gauges, installed and subjected to static loading tests in a building site in Hong Kong. The residual forces in these piles during and after pile installation were recorded. The development of residual forces as it relates to the pile penetration depth during construction, and in time after the piles were installed, is presented. The measured load transfers in the piles from static loading tests are reported and the effect of the residual forces on the interpretation of load-transfer behavior is studied. The field measurements show that residual forces increase approximately exponentially with penetration depth. The residual forces continue to increase with time after pile driving due to secondary compression of disturbed soils around the pile shaft and other factors. The large residual forces in the long piles significantly affect the interpretation of the pile load distributions. The effect of residual forces on the shaft resistance is significant at shallow depths. Bearing-capacity theory tends to overpredict the true toe resistance of the long piles founded in weathered soils.  相似文献   

9.
In the literature, various “failure criteria” or methods of estimating the failure load in pile loading tests have been proposed. The criteria, based on varying assumptions, were intended for different methods of pile testing and were verified on tests of a variety of pile types and sizes. Most of the criteria were not developed for slow maintained loading tests of large-diameter (greater than 0.6 m) and long bored piles. Piles of this kind have considerable resistance, and it is often impractical to reach failure load as defined by the various criteria. In this paper, a total of 38 large-diameter bored piles (drilled shafts) that were tested, ranging from 0.6 to 1.8 m in diameter, varying from 12 to 66 m in depth, and founded in weathered geomaterials (rocks and saprolites), are critically reviewed and studied. Among them, a selection of seven pile load tests is examined in detail by using different existing failure criteria and specifications. The tests were chosen for their high degree of mobilization of pile capacity and the availability of reliable load-movement relationships. Specific aspects of pile behavior, such as the mobilization of toe resistance and shaft shortening, are also investigated using 31 loading tests to develop a new failure load criterion. The writers were heavily involved with the construction, testing, and analysis of 15 of the 38 piles. From the results of the study, a new nonsubjective, semiempirical method is proposed for estimating the approximate interpreted failure loads for piles founded in weathered geomaterials. The method is based on a moderately conservative estimation of the movement required to mobilize toe resistance and incorporates observations of shaft shortening from pile loading tests. Generally, the new method may allow more effective and consistent designs for large-diameter bored piles in weathered geomaterials.  相似文献   

10.
Pile jacking is a piling technique that provides a noise- and vibration-free environment in the construction site. To improve termination criteria for pile jacking and to better understand the behavior of jacked piles, two steel H piles were instrumented, installed at a weathered soil site, and load tested. A set of termination criteria was applied to the test piles, which includes a minimum blow count from the standard penetration test, a specified final jacking force, a minimum of four loading cycles at the final jack force, and a specified maximum rate of pile settlement at the final jacking force. The two test piles passed all required acceptance criteria. Punching shear failure occurred at the failure load for both piles and the shaft resistance consisted of approximately 80% of the pile capacity. Based on the results of field tests in Hong Kong and Guangdong and several centrifuge tests, a relation between the ratio of the pile capacity Pult to the final jacking force PJ and the pile slenderness ratio is established. The Pult/PJ ratio is larger than 1.0 for long piles but may be smaller than 1.0 for short piles. A regression equation is established to determine the final jacking force, which is suggested as a termination criterion for jacked piles. The final jacking force can be smaller than 2.5 times the design load for very long piles, but should be larger than 2.5 times the design load for piles shorter than 37 times the pile diameter.  相似文献   

11.
Both the driving response and static bearing capacity of open-ended piles are affected by the soil plug that forms inside the pile during pile driving. In order to investigate the effect of the soil plug on the static and dynamic response of an open-ended pile and the load capacity of pipe piles in general, field pile load tests were performed on instrumented open- and closed-ended piles driven into sand. For the open-ended pile, the soil plug length was continuously measured during pile driving, allowing calculation of the incremental filling ratio for the pile. The cumulative hammer blow count for the open-ended pile was 16% lower than for the closed-ended pile. The limit unit shaft resistance and the limit unit base resistance of the open-ended pile were 51 and 32% lower than the corresponding values for the closed-ended pile. It was also observed, for the open-ended pile, that the unit soil plug resistance was only about 28% of the unit annulus resistance, and that the average unit frictional resistance between the soil plug and the inner surface of the open-ended pile was 36% higher than its unit outside shaft resistance.  相似文献   

12.
The behavior of step tapered bored piles in sand, under static lateral loading, was examined by field tests at one site in Kuwait. A total of 14 bored piles including two instrumented piles were installed for lateral loading. The soil profile consists of medium dense sand with weak cementations and no groundwater was encountered in the boreholes. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. Both the ultimate lateral capacity and the deflections at applied loads were examined. The results indicate increased lateral load carrying capacity and decreased deflections at different applied loads for the step tapered piles due to the enlargement or strengthening of the upper section of the piles. The advantages of using this type of pile is emphasized including the cost saving resulting from an economical design.  相似文献   

13.
Cyclic Lateral Load Behavior of a Pile Cap and Backfill   总被引:1,自引:0,他引:1  
A series of static cyclic lateral load tests were performed on a full-scale 4×3 pile group driven into a cohesive soil profile. Twelve 324-mm steel pipe piles were attached to a concrete pile cap 5.18×3.05?m in plan and 1.12?m in height. Pile–soil–pile interaction and passive earth pressure provided lateral resistance. Seven lateral load tests were conducted in total; four tests with backfill compacted in front of the pile cap; two tests without backfill; and one test with a narrow trench between the pile cap and backfill soil. The formation of gaps around the piles at larger deflections reduced the pile–soil–pile interaction resulting in a degraded linear load versus deflection response that was very similar for the two tests without backfill and the trenched test. A typical nonlinear backbone curve was observed for the backfill tests. However, for deflections greater than 5 mm, the load-deflection behavior significantly changed from a concave down shape for the first cycle to a concave up shape for the second and subsequent cycles. The concave up shape continued to degrade with additional cycles past the second and typically became relatively constant after five to seven cycles. A gap formed between the backfill soil and the pile cap, which contributed to the load-deflection degradation. Crack patterns and sliding surfaces were consistent with that predicted by the log spiral theory. The results from this study indicate that passive resistance contributes considerably to the lateral resistance. However, with cyclic loading the passive force degrades significantly for deflections greater than 0.5% of the pile cap height.  相似文献   

14.
Tapered piles in comparison to cylindrical piles can be beneficial in terms of the load capacity. In this paper, estimation of the load capacity for tapered piles using cone penetration test (CPT) resistance was investigated. Fourteen calibration chamber load tests using different pile types and six CPTs were conducted under various soil conditions. From the calibration chamber test results, the total, base, and shaft load capacities were analyzed in terms of soil conditions and taper angle. To evaluate CPT-based load capacity of tapered piles, normalized base and shaft resistances were obtained from normalized unit load-settlement curves. Based on the normalized base and shaft resistances, design equations that can be used to evaluate the base and shaft resistances of tapered piles were proposed. The proposed method is valid for sands of medium to dense conditions, while it may result in unconservative predictions for loose sands. To check the accuracy of the proposed method, field load tests using both cylindrical and tapered piles were conducted and compared with the predictions using the proposed method. A simplified approach using an equivalent cylindrical pile was also investigated and compared.  相似文献   

15.
This paper presents results of full-scale lateral load tests of one single pile and three pile groups in Hong Kong. The test piles, which are embedded in superficial deposits and decomposed rocks, are 1.5 m in diameter and approximately 30 m long. The large-diameter bored pile groups consist of one two-pile group at 6 D (D = pile diameter) spacing and one two-pile and one three-pile group at 3 D spacing. This paper aims to investigate the nonlinear response of laterally loaded large-diameter bored pile groups and to study design parameters for large-diameter bored piles associated with the p-y method using a 3 D finite-element program, FLPIER. Predictions using soil parameters based on published correlations and back-analysis of the single-pile load test are compared. It is found that a simple hyperbolic representation of load-deflection curves provides an objective means to determine ultimate lateral load capacity, which is comparable with the calculated values based on Broms' theory. Lateral deflections of bored pile groups predicted using the values of the constant of horizontal subgrade reaction, suggested by Elson and obtained from back-analysis of the single pile load test, are generally in good agreement with the measurements, especially at low loads.  相似文献   

16.
Integral abutment bridges (IABs) with short steel H-pile (HP) supported foundations ( ? 4?m of pile depth) are economical for many environmentally sensitive sites with shallow bedrock. However, such short piles may not develop an assumed, fixed-end support condition at some depth below the pile cap, which is inconsistent with traditional pile design assumptions involving an equivalent length for bending behavior of the pile. In this study, the response of an IAB with short HP-supported foundations and no special pile tip details such as drilling and socketing is investigated. Instrumentation of a single-span IAB with 4-m-long piles at one abutment and 6.2- to 8.7-m-long piles at the second abutment is described. Instrumentation includes pile strain gauging, pile inclinometers, extensometers to measure abutment movement, earth pressure cells, and thermistors. Pile and bridge response during construction, under controlled live load testing, and due to seasonal movements are presented and discussed. Abutment and pile head rotations due to self-weight, live load, and seasonal movements were all found to be significant. Measured abutment movements were likely affected by both temperature changes and deck creep and shrinkage. Based on the field study results presented here, moderately short HPs driven to bedrock without special tip details appear to perform well in IABs and do not experience stresses larger than those seen by longer piles.  相似文献   

17.
Pipe piles can be classified as either closed- or open-ended piles. In the present paper, the load capacity of both closed- and open-ended piles is related to cone penetration resistance qc through an experimental program using calibration chamber model pile load tests and field pile load tests. A total of 36 calibration chamber pile load tests and two full-scale field pile load tests were analyzed. All the test piles were instrumented for separate measurement of each component of pile load capacity. Based on the test results, the normalized base resistance qb/qc was obtained as a function of the relative density DR for closed-ended piles, and of both the relative density DR and the incremental filling ratio (IFR) for open-ended piles. A relationship between the IFR and the relative density DR is proposed as a function of the pile diameter and driving depth. The relationship between IFR and DR allows the estimation of IFR and thus of the pile load capacity of open-ended piles at the design stage, before pile driving operations.  相似文献   

18.
The coupled bridge foundation-superstructure finite-element code FLPIER was employed to predict the lateral response of the single piles and 3 × 3 to 7 × 3 pile groups founded in both loose and medium dense sands. The p-multiplier factors suggested by McVay et al. for laterally loaded pile groups with multiple pile rows were implemented for the predictions. The soil parameters were obtained through a back-analysis procedure based on single pile test results. The latter, as well as the numerical predictions of both the single and group tests, are presented. It was found that the numerical code FLPIER did an excellent job of predicting the response of both the single piles and the 3 × 3 to 7 × 3 pile groups. The latter involved the predictions of lateral load versus lateral deflection of the group, the shears and bending moments developed in the individual piles, and the distributions of the lateral loads in each pile row, which were all in good agreement with the measured results.  相似文献   

19.
In the United States, an estimated $1 billion is spent annually on repair and replacement of deep foundations. In a recent study, the possibility of using ultrahigh-performance concrete (UHPC) for deep foundation applications was explored with the objectives of increasing the service life of deep foundations supporting bridges to 75 years and reducing maintenance costs. This paper focuses on field evaluation of two UHPC piles and references a steel H-pile. An UHPC pile with an H shape was designed to simplify the process of casting the pile and reduce the volume (i.e., cost) of the material needed to cast the pile. Two instrumented UHPC piles were driven in loess on top of a glacial till clay soil and load tested under vertical and lateral loads. This paper provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. The results presented in this paper prove that the designed UHPC piles can be driven using the same equipment used to drive steel H-piles through hard soil layers without a pile cushion. The vertical load capacity of the UHPC pile was over 80% higher than that of the steel H-piles.  相似文献   

20.
Permanent Strains of Piles in Sand due to Cyclic Lateral Loads   总被引:2,自引:0,他引:2  
The strain superposition concept, proposed for ballast study, is applied here to evaluate strain accumulation for laterally loaded piles in sand. It is shown that the soil properties, types of pile installation, cyclic loading types, pile embedded length, and pile∕soil relative stiffness ratio are important factors that influence the pile behavior under mixed lateral loads. These factors are quantified by means of a degradation factor, t, which is derived from the results of 20 full-scale pile load tests and then verified using 6 additional full-scale pile load tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号