首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The comfort and safety of a moving train is largely determined by the dynamic response of the railway track and its foundation (i.e., subgrade). To study the dynamic stability of a silt subgrade subjected to train traffic loading with increasing speed, cyclic triaxial tests were conducted for compacted silt specimens with varying dry density, water content, dynamic stress, and load frequency. The laboratory test results and field measurements of the subgrade dynamic stress under train loading indicate that with increasing train speed, an increase in dynamic stress and load frequency does not impair the stability of the silt subgrade, provided the subgrade is in sound physical condition (i.e., its natural water content approximates the optimal water content) and the relative compaction is at least 90%. However, if the relative compaction is 85%, the subgrade is stable only at a dynamic stress level that is below 70 kPa, and the subgrade may suffer shear failure at a higher dynamic stress level. The elastic deformation of the subgrade linearly increases with an increase in train speed. However, if the degree of saturation of the silt subgrade increases, the thresholds of both the dynamic stress and resilient modulus decrease markedly, accompanied by sharp increases in elastic deformation and cumulative deformation and can even result in the shear failure of the subgrade. These conditions are unfavorable for the high speeds and stability needed for trains; therefore, train speeds should be limited in wet conditions to reduce subgrade dynamic stress and load frequency.  相似文献   

2.
Track roughness describes in part the up and down waves in the longitudinal geometry of a railway track. A train passing over rough track experiences a degree of bouncing that generates oscillations in the forces exerted by the train’s wheels on the top of the rail, which in turn cause this roughness to worsen. The rate at which the track roughness deteriorates depends on the response of the track to the weight of the train and to the dynamic oscillations in wheel/rail forces, which in turn are affected by the properties of the train vehicles’ components and the speed of the train. The paper develops relationships between the severity of track roughness and the dynamic wheel/rail forces generated by a moving train using field data, and between those forces and the specific vehicle characteristics of speed, total mass, unsprung mass, suspension stiffness, and damping, using NUCARS simulations. These two relationships in turn are combined to show how the speed of the train and the design of the train vehicle’s bogie suspension can worsen or improve the rate of deterioration of track roughness. The relationships also provide a firm basis for the owner of track to set more representative charges levied on the train operator for using the track.  相似文献   

3.
A realistic assessment of the whole life cost of rail track foundations requires analysis of the effects of the repeated loadings applied by trains. This paper reports the effects of principal stress rotation (PSR) during cyclic loading on the permanent deformations measured in a series of hollow cylinder tests. The tests were carried out on a number of reconstituted soils selected in order to simulate foundation materials on an existing heavy haul railway line. Typical loadings and track geometry together with dynamic finite-element analyses were used to define representative stress changes to be applied to these soils, which were then tested with and without principal stress rotation during loading. It is shown that principal stress rotation has a significant and deleterious impact on permanent deformation of some materials. Therefore, it is concluded that cyclic triaxial testing, which cannot impose principal stress rotation, will not necessarily give good estimates of the long-term performance of rail track foundations. As PSR cannot be ignored when evaluating permanent displacements of rail track foundations, the use of more appropriate (realistic) testing methods such as the cyclic hollow cylinder or the cyclic simple shear apparatus is required.  相似文献   

4.
The objective of this research is to develop a microelectromechanical system (MEMS)-based intelligent hybrid Biaxial Strain Transducer (BiAST) sensor for predicting railroad fatigue life based on strain history. The developed BiAST prototype was deployed to collect real-time strain data from the full-scale test track at the Transportation Technology Center (TTCI), near Pueblo, Colorado. The collected strain data were analyzed using the “Binner” fatigue analysis program for counting the load cycles and estimating the fatigue life of a rail structure. Field-testing results of the BiAST were used to evaluate the BiAST prototype with respect to its repeatability, accuracy, and hybridization. BiAST was effective in detecting the dynamic response of a particular wheel and spurious overload events. BiAST can be used to detect passing wheels, train speed, and track condition.  相似文献   

5.
The present paper is concerned with the motion of an elastically supported beam that carries an elastic beam moving at constant speed. This problem provides a limiting case to the assumptions usually considered in the study of trains moving on rail tracks. In the literature, the train is commonly treated as a moving line-load with space-wise constant intensity, or as a system of moving rigid bodies supported by single springs and dampers. In extension, we study an elastically supported infinite beam, which is mounted by an elastic beam moving at a constant speed. Both beams are considered to have distributed stiffness and mass. The moving beam represents the train, while the elastically supported infinite beam models the railway track. The two beams are connected by an interface modeled as an additional continuous elastic foundation. Here, we follow a strategy by Stephen P. Timoshenko, who showed that a beam on discrete elastic supports could be modeled as a beam on a continuous elastic Winkler (one-parameter) foundation without suffering a substantial loss in accuracy. The celebrated Timoshenko theory of shear deformable beams with rotatory inertia is used to formulate the equations of motion of the two beams under consideration. The resulting system of ordinary differential equations and boundary conditions is solved by means of the powerful methods of symbolic computation. We present a nondimensional study on the influence of the train stiffness and the interface stiffness upon the pressure distribution between train and railway track. Considerable pressure concentrations are found to take place at the ends of the moving train.  相似文献   

6.
The vibrations in track and ground induced by train passages are investigated by the substructure method with due consideration to dynamic interaction between an inhomogeneous track system comprising continuous rails and discrete sleepers, and the underlying viscoelastic layered half space ground. Initially, the total system is divided into two separately formulated substructures, i.e., the track and the ground. The rail is described by introducing the Green function for an infinite long Euler beam both for moving axle loads action from a train and for reactions from sleepers. The ground is formulated by the layer transfer matrix approach for wave propagation along the depth. Subsequently, these substructures are integrated to meet the displacement compatibility and force equilibrium via inertia of sleepers and stiffness of railpad springs. The dynamic equations are solved in the frequency–wave-number domain by applying the Fourier transform procedure. Based on the assumption of a constant train speed, the time domain response is evaluated from the inverse Fourier transform computation. The dispersive characteristics of the layered ground and the moving axle loads lead to significantly different response features, depending on the train speed. The response is classified as quasistatic for a low speed, whereas it is dynamic for a high-speed situation. An illustrative case study is presented for Swedish X-2000 train track properties and ground profile.  相似文献   

7.
The use of continuous welded rail (CWR) with direct fixation of track on concrete deck is typical of most modern light-rail aerial structures. The interaction between the CWR and the elevated structure takes place through direct-fixation rail fasteners, which have a nonlinear force-displacement relationship. Factors that have significant influence on this interaction include the following: the bearing arrangement at the substructure units, trackwork terminating on the aerial structure, type of deck construction, and type of rail fasteners. To better understand the interaction mechanism, a nonlinear three-dimensional (3D) finite-element analysis of a straight, skewed, elevated steel guideway was carried out using the commercially available software GT STRUDL. The load cases considered in this study are temperature change, temperature change with rail breaking, and train braking. Results are presented in the form of rail axial stresses along the length of the bridge and normal bearing forces at both abutments and at all pier locations. The study shows that nonlinear 3D modeling can give a comprehensive insight into the rail-structure interaction (RSI) forces.  相似文献   

8.
Vibration and noise are two major factors in the performance assessment of rail transit systems, particularly in an urban environment where elevated systems are used. A program of field measurements was conducted in Singapore on an elevated section of straight tracks to monitor the rail vibrations and noise generated during the passage of trains. Field measurements included impact hammer tests to determine the driving point impedances of the train wheel and track support system. These tests are relatively easy to perform, requiring only an inverted wheel-set-and-bogie assembly at the workshop and the tracks at the test yard. An analytical train model was developed to predict the level of rolling noise at the wayside of the tracks for comparison with measured levels. The analytical predictions from the model were found to be in good agreement with field measurements. A hybrid approach involving a finite-element model of the track support system and impact hammer test results was also presented to determine the effect of using softer rails pads.  相似文献   

9.
A framework is presented for predicting the dynamic response of long suspension bridges to high winds and running trains. A three-dimensional finite-element model is used to represent a suspension bridge. Wind forces acting on the bridge, including both buffeting and self-excited forces, are generated in the time domain using a fast spectral representation method and measured aerodynamic coefficients and flutter derivatives. Each 4-axle vehicle in a train is modeled by a 27-degrees-of-freedom dynamic system. The dynamic interaction between the bridge and train is realized through the contact forces between the wheels and track. By applying a mode superposition technique to the bridge only and taking the measured track irregularities as known quantities, the number of degrees of freedom of the bridge-train system is significantly reduced and the coupled equations of motion are efficiently solved. The proposed formulation is then applied to a real wind-excited long suspension bridge carrying a railway inside the bridge deck of a closed cross section. The results show that the formulation presented in this paper can predict the dynamic response of the coupled bridge-train systems under fluctuating winds. The extent of interaction between the bridge and train depends on wind speed and train speed.  相似文献   

10.
邓延成 《河北冶金》2014,(11):78-79
介绍了承钢铁路道岔的特点。针对其重载铁路道岔尖轨使用寿命短、稳定性差等问题,采用了在道岔尖端曲基本轨侧安装防磨护轨的技术方案。实施后,尖轨磨耗明显减少,更换尖轨数量仅为2013年同期的1/4,更换周期由15天延长到30天。同时改善了列车过道岔的平稳性,为承钢安全生产提供了有力保障。  相似文献   

11.
The nonlinear dynamic properties of a fibrous peaty organic soil beneath a levee in the Sacramento–San Joaquin Delta in California are described herein. Thin-walled tube samples were obtained from four locations between the levee crest and the free field such that the in situ vertical effective stresses (σvo′) ranged from about 12 kPa in the free field to about 135 kPa beneath the levee crest. The peaty organic soil was very soft and highly compressible in the free field with initial water contents (wo) of 236–588% and shear wave velocities (Vs) of typically 22–27 m/s, and moderately firm beneath the levee crest with wo of 152–240% and Vs of typically 88–129 m/s. Stress–strain measurements in a cyclic triaxial device showed that the normalized secant shear modulus (G/Gmax) and equivalent damping ratio (ξ) versus cyclic shear strain amplitude (γc) relations were dependent on the consolidation stress (σvc′). Tests involving prior overstraining followed by reconsolidation showed that the effects of sample disturbance were likely small. Stress history, creep, and loading frequency effects were also examined. Tests on reconstituted specimens provided supplementary data on the functional relation between maximum shear modulus (Gmax) and consolidation stress conditions. Summary relations are provided for G/Gmax and ξ versus γc and for Gmax versus σvc′.  相似文献   

12.
Regression models are presented for the dynamic properties of highly organic soils. The models are based on a database of triaxial and resonant-column/torsional-shear cyclic loading tests on thin walled tube samples mainly retrieved from the Sacramento-San Joaquin Delta. The soils in this database range from highly fibrous peat to amorphous organic clays with organic contents (OC) ranging from 14–81%, water contents ranging from 88–495%, total densities (ρ) ranging from 1.056–1.450?Mg/m3, and effective consolidation stresses (σvc′) ranging from 11–135?kPa. The secant shear modulus (G) and equivalent damping ratio (ξ) were modeled as variables dependent on the shear strain amplitude (γc), consolidation stress (σvc′), and OC. The residuals of the regression models were analyzed against other predictor variables including undisturbed density (ρ), loading frequency (f), and number of loading cycles (N). A regression model for ρ was developed, and conditional probabilities were used to improve the estimation of G and ξ when ρ measurements were available. The database of in situ measurements of shear wave velocity (Vs) was used to adjust the regression model for in situ conditions. Variances and correlations in the regression models are presented.  相似文献   

13.
For an efficient and economical design of a railway track system, it is necessary to understand the behavior of each track component with special reference to ballast and subgrade, which play a pivotal role in distributing the large, cyclic wheel loads longitudinally, laterally, and vertically away from the wheel contact area on the rail surface to the underlying soil strata. This paper presents an analytical model of a track-ballast-subgrade system with different formation soils such as dense uniform sand, stiff clay, loose sand, and soft clay modeled by using a mass-spring dashpot system with two degrees of freedom. This represents the varying energy distribution through ballast and subgrade in the vertical direction. Results are presented in the form of time-displacement response profiles for both the ballast and subgrade layers. In addition, the magnification factors for displacements with variation in subgrade soils for cyclic loading frequencies are reported. It is observed that the results obtained from the present analysis follow the experimentally observed trends already available in the literature.  相似文献   

14.
列车的制动性能与闸片材料的摩擦磨损性能关系密切,在MM-1000Ⅱ型摩擦试验机上测试了自制的Cu基粉末列车闸片材料在不同制动速度下的摩擦磨损特性。结果表明:随着制动速度的增大,摩擦表面的微凸起遭到破坏,摩擦因数随之降低,磨损量增加;在材料接触表面产生大量的摩擦热,造成基体软化,减小了基体对材料中SiO_2等硬质颗粒的夹持能力。摩擦因数和稳定系数均随制动速度增加而降低;而摩擦温度和磨损量随制动速度增加而提高,尤其是在制动速度大于8 r/s时,摩擦表面温度上升,造成基体软化,硬质颗粒脱落,加速了材料的摩擦磨损。为列车制动用Cu基粉末闸片材料摩擦磨损性能的研究提供了理论基础。  相似文献   

15.
This paper presents the use of computational fluid dynamics (CFD) to determine the distribution of the bed and sidewall shear stresses in trapezoidal channels. The impact of the variation of the slant angle of the side walls, aspect ratio, and composite roughness on the shear stress distribution is analyzed. The shear stress data can be directly output from the CFD models at the boundaries, but they can also be derived using the Guo and Julien equations for the average bed and side wall shear stresses. These equations compute the shear stress as a function of three components; gravitational, secondary flows, and interfacial shear stress, and are hence used to gauge the respective merits of the different components of wall shear. The results show a significant contribution from the secondary currents and internal shear stresses on the overall shear stress at the boundaries. This work also extends previous work of the authors on rectangular channels.  相似文献   

16.
车轮钢摩擦热影响区的相变及其损伤机理   总被引:2,自引:0,他引:2  
将有限元热力耦合一温度场分析与材料相变特征的实验研究相结合,研究了高速度(200kin/h)、大载荷(10^5N)条件下车轮摩擦热影响区的相变过程,探讨了材料对该过程的影响。结果表明,轮一轨摩擦导致的车轮踏面局部升温可超过材料的奥氏体相变的临界点,碳含量为0.5%时,完全奥氏体化层的深度可达0.6mm;过冷奥氏体高速冷却,几乎全部形成脆硬的马氏体薄层,造成踏面剥离。通过降碳来降低车轮钢奥氏体相变的临界点,可以显著抑制踏面马氏体层的形成。随着碳含量从0.7%降至0.4%,材料的Ae3提高45℃,马氏体层的厚度减小30%,有助于减少车轮踏面的热疲劳损伤。  相似文献   

17.
The measurement of track stiffness, or track modulus, is an important parameter for assessing the condition of a railway track. This paper describes a method by which the dynamic track modulus can be determined from the dynamic displacements of the track during normal train service, measured using geophones. Two techniques are described for calculating the track modulus—the inferred displacement basin test (DBT) method and a modified beam on an elastic foundation (BOEF) method. Results indicate that the viscoelastic response of the soil will influence the value of track modulus determined using the DBT method. The BOEF method was therefore used to calculate the apparent increase in axle load due to train speed. Hanging or partly supported sleepers were associated with a relatively small increase in dynamic axle loads with train speed.  相似文献   

18.
沿黄河高速公路建设过程中,黄河泥沙作为路基填料的可行性已经得到验证和重视,然而目前有关黄河泥沙作为路基填料的动力特性的研究较少.本文利用英国GDS动态三轴试验系统,对取自黄河中下游郑州段的泥沙进行应力控制的动三轴试验,探究了围压、相对密实度和试验频率对黄河泥沙动剪应力–动剪应变关系、动剪切模量G和阻尼比D的影响,绘制了动剪应力–动剪应变关系骨干曲线和滞回曲线.结果表明,黄河泥沙的动剪切模量、阻尼比与剪应变关系可以用Hardin双曲线模型描述,围压对G和D的影响较大、试验频率对G和D的影响较小.综合与其他土体的动力特性对比表明,黄河泥沙动剪切模量折减曲线规律以及阻尼比D曲线规律和其他土体相符,其动力特性更接近于粉土和砂土,但与其他土体并不完全一致,具有一定的特殊性.最后,本文考虑了围压、相对密实度的影响,并结合现有经验公式,建立可以较好描述黄河泥沙最大动剪切模量Gmax与围压、孔隙比关系的经验公式,同时建立了动剪切模量比G/Gmax和D的数学模型,拟合结果显示,建立的模型能较好地描述黄河泥沙的G/Gmax和D随剪应变的变化...  相似文献   

19.
In Australia, very few rail tracks have been constructed directly on deep estuarine deposits. In recent years, Kooragang Island has become a major export terminal and most coal trains need to cross the main lines at Sandgate to enter Kooragang Island. In this study, a rail track built on up to 30 m of thick soft estuarine soil was stabilized with relatively short vertical drains to consolidate the soil just beneath the track, and no additional preloading surcharge was provided, except the weight from the trains. The initial soil compression was caused by the passage of trains with a speed restricted at 40 km/h. From this study, it is shown that prefabricated vertical drains significantly decrease the buildup of excess pore-water pressure during cyclic loading, and also continue to dissipate excess pore-water pressure during the rest period. A preliminary finite-element analysis was employed to examine the performance of vertical drains, and a Class A prediction was obtained in terms of lateral and vertical displacements. The monitored settlement and lateral displacement results are presented and discussed. The study shows that relatively short vertical drains are sufficient for providing stability for rail tracks, without the need for driving deep vertical drains through the entire soft soil depth.  相似文献   

20.
The two suction foundation platforms installed in the Bohai Sea have vertical narrow columns passing through the water level. The continuous ice crushing on the columns and thereby the dynamic ice-structure interaction may usually happen during the ice season resulting in sustained violent vibrations of the structures. The paper first introduces the ice-induced vibration analysis of the suction foundation platform by using the self-excited vibration theory. Then the maximum dynamic shear stresses in the soil induced by ice are obtained from the analyses. By comparing the dynamic stresses to the cyclic strength of soil, which can be determined according to soil characteristics and features of the dynamic loading, the potential soil liquefaction is finally assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号