首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the response of piles in liquefiable soil under seismic loads. The effects of soil, pile, and earthquake parameters on the two potential pile failure mechanisms, bending and buckling, are examined. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear constitutive model for soil liquefaction, strength reduction, and pile-soil interaction. The depths of liquefaction, maximum lateral displacement, and maximum pile bending moment are obtained for concrete and steel piles for different soil relative densities, pile diameters, earthquake predominant frequencies, and peak accelerations. The potential failure mechanisms of piles identified from the parametric analysis are discussed.  相似文献   

2.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

3.
Simplified Approach for the Seismic Response of a Pile Foundation   总被引:1,自引:0,他引:1  
Pseudostatic approaches for the seismic analysis of pile foundations are attractive for practicing engineers because they are simple when compared to difficult and more complex dynamic analyses. To evaluate the internal response of piles subjected to earthquake loading, a simplified approach based on the “p-y” subgrade reaction method has been developed. The method involves two main steps: first, a site response analysis is carried out to obtain the free-field ground displacements along the pile. Next, a static load analysis is carried out for the pile, subjected to the computed free-field ground displacements and the static loading at the pile head. A pseudostatic push over analysis is adopted to simulate the behavior of piles subjected to both lateral soil movements and static loadings at the pile head. The single pile or the pile group interact with the surrounding soil by means of hyperbolic p-y curves. The solution derived first for the single pile, was extended to the case of a pile group by empirical multipliers, which account for reduced resistance and stiffness due to pile-soil-pile interaction. Numerical results obtained by the proposed simplified approach were compared with experimental and numerical results reported in literature. It has been shown that this procedure can be used successfully for determining the response of a pile foundation to “inertial” loading caused by the lateral forces imposed on the superstructure and “kinematic” loading caused by the ground movements developed during an earthquake.  相似文献   

4.
Assessment of the response of a laterally loaded pile group based on soil–pile interaction is presented in this paper. The behavior of a pile group in uniform and layered soil (sand and/or clay) is evaluated based on the strain wedge model approach that was developed to analyze the response of a long flexible pile under lateral loading. Accordingly, the pile’s response is characterized in terms of three-dimensional soil–pile interaction which is then transformed into its one-dimensional beam on elastic foundation equivalent and the associated parameter (modulus of subgrade reaction Es) variation along pile length. The interaction among the piles in a group is determined based on the geometry and interaction of the mobilized passive wedges of soil in front of the piles in association with the pile spacing. The overlap of shear zones among the piles in the group varies along the length of the pile and changes from one soil layer to another in the soil profile. Also, the interaction among the piles grows with the increase in lateral loading, and the increasing depth and fan angles of the developing wedges. The value of Es so determined accounts for the additional strains (i.e., stresses) in the adjacent soil due to pile interaction within the group. Based on the approach presented, the p–y curve for different piles in the pile group can be determined. The reduction in the resistance of the individual piles in the group compared to the isolated pile is governed by soil and pile properties, level of loading, and pile spacing.  相似文献   

5.
This technical note revisits the interaction factors for two piles under lateral loading by means of a rigorous analytical method. The basic idea of the approach presented is to decompose the problem into an extended elastic soil and two fictitious piles having Young’s modulus equal to the difference between the modulus of the real pile and the surrounding soil. By considering the displacement compatibility condition, the pile–soil interaction problem is found to be governed by a Fredholm equation of the second kind. The displacement and bending moment distribution along the fictitious piles, and consequently, the desired interaction factor at the pile head are obtained. Comparison with existing solutions validates the accuracy of the present formulation and confirms that the conventional interaction factor approach would exaggerate the interaction effect for long flexible piles. Some numerical examples are presented to illustrate the influences of the pile spacing, pile–soil stiffness ratio, pile slenderness ratio, and departure angle of the loading direction on the calculated results. A set of interaction factor charts is also provided.  相似文献   

6.
Both the driving response and static bearing capacity of open-ended piles are affected by the soil plug that forms inside the pile during pile driving. In order to investigate the effect of the soil plug on the static and dynamic response of an open-ended pile and the load capacity of pipe piles in general, field pile load tests were performed on instrumented open- and closed-ended piles driven into sand. For the open-ended pile, the soil plug length was continuously measured during pile driving, allowing calculation of the incremental filling ratio for the pile. The cumulative hammer blow count for the open-ended pile was 16% lower than for the closed-ended pile. The limit unit shaft resistance and the limit unit base resistance of the open-ended pile were 51 and 32% lower than the corresponding values for the closed-ended pile. It was also observed, for the open-ended pile, that the unit soil plug resistance was only about 28% of the unit annulus resistance, and that the average unit frictional resistance between the soil plug and the inner surface of the open-ended pile was 36% higher than its unit outside shaft resistance.  相似文献   

7.
The paper describes the in situ investigation, site stratigraphy, field monitoring, data reduction, and subsequent time-domain analysis of soil–structure interaction from a full scale vessel impact loading of a bridge pier at the St. George Island Causeway. The in situ investigation included standard penetration testing, electric cone, dilatometer, and pressuremeter testing to identify soil stratigraphy, engineering properties (strength and moduli), and axial and lateral static pile resistance (T–z, and P–y). Field instrumentation included soil total stress and pore pressure gauges in front of and behind the pile cap, a fully instrumented pile (strain gauges along length), dynamic load cells to monitor barge impact loads, and accelerometers to monitor pier accelerations, velocities, and displacements. Analyses of the field data reveal significant dynamic forces within the soil–structure system as a result of the duration and magnitude of the loading. Inertia from the piers, cap, and piles provide significant resistance in the early portion of the impact. However, postpeak inertia (i.e., pier deceleration) resulted in maximum deformations of the pier. Soil damping provided most of the resisting force at the peak barge loading, whereas static soil resistance dominated at the peak lateral displacement. Time-domain finite element analysis of an impact event employing viscous soil dashpots, nonlinear P–y and T–z springs with nonlinear beam, and shell elements for the pier, cap, and piles resulted in reasonable load displacement predictions.  相似文献   

8.
Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan, to assess the behavior of a single pile, a four-pile group, and a nine-pile group subjected to lateral spreading. The test piles were extensively instrumented with strain gauges to measure the distribution of bending moment during lateral spreading which allowed the backcalculation of the loading conditions, as well as the assessment of damage and performance of the piles. Based on the test results, it was concluded that using controlled blasting successfully liquefied the soil, and subsequently induced lateral spreading in the 4–6% surface slope test beds. The free-field soil displacements in the vicinity of the test piles were over 40 cm for both tests. When compared with the results from the single pile case, the effect of pile head restraint from the pile cap improved overall pile performance by decreasing the displacement of the pile groups and lowering the maximum moments in individual piles within each group. Finally, backcalculated soil reactions indicated that the liquefied soil layer imparted insignificant force to the piles. In the companion to this paper (Part II), an assessment of the potential of using the p–y analysis method for single piles and pile groups subjected to lateral spreading is presented.  相似文献   

9.
A modified procedure is presented in this study to evaluate the equivalent top-down load-displacement curve in a bottom-up pile load test considering elastic shortening. On the basis of the results of a parametric study on a bored pile in normally consolidated cohesive soils under undrained conditions, varying shear strength distribution and pile slenderness ratio, it was concluded that the pile shortening caused by the skin-friction component of the load in a top-down test can be related to the measured elastic shortening in a bottom-up test. A λ-factor is used to define this relationship, that is, the ratio of the top-down to bottom-up pile shortening. The factor λ = 1.0 is used for the case of a pile in soil with uniform shear strength profile, λ = 2.0 for linear profiles, 1.0<λ<2.0 for nonlinear profiles varying above linear, and λ>2.0 for nonlinear profiles varying below linear. In addition, the method suggests taking the corresponding readings of the skin-friction load component from the upward displacement curve of the top of the pile, which is a closer approximation to rigid pile displacement than the bottom when corrections for elastic pile shortening are to be applied. Assuming a fully mobilized skin-friction, a logarithmic relation for the factor λ to the normalized area under the shear strength profile was generally formulated and is limited to the assumptions on which they were derived. The suggested procedure in this study has produced the equivalent top-down load-displacement curves that are in close agreement with the measured top-down curve, as validated in the case studies.  相似文献   

10.
This paper uses a hybrid method for analysis and design of slope stabilizing piles that was developed in a preceding paper by the writers. The aim of this paper is to derive insights about the factors influencing the response of piles and pile-groups. Axis-to-axis pile spacing (S), thickness of stable soil mass (Hu), depth (Le) of pile embedment, pile diameter (D), and pile group configuration are the parameters addressed in the study. It is shown that S = 4D is the most cost-effective pile spacing, because it is the largest spacing that can still generate soil arching between the piles. Soil inhomogeneity (in terms of shear stiffness) was found to be unimportant, because the response is primarily affected by the strength of the unstable soil layer. For relatively small pile embedments, pile response is dominated by rigid-body rotation without substantial flexural distortion: the short pile mode of failure. In these cases, the structural capacity of the pile cannot be exploited, and the design will not be economical. The critical embedment depth to achieve fixity conditions at the base of the pile is found to range from 0.7Hu to 1.5Hu, depending on the relative strength of the unstable ground compared to that of the stable ground (i.e., the soil below the sliding plane). An example of dimensionless design charts is presented for piles embedded in rock. Results are presented for two characteristic slenderness ratios and several pile spacings. Single piles are concluded to be generally inadequate for stabilizing deep landslides, although capped pile-groups invoking framing action may offer an efficient solution.  相似文献   

11.
Pile jacking is a piling technique that provides a noise- and vibration-free environment in the construction site. To improve termination criteria for pile jacking and to better understand the behavior of jacked piles, two steel H piles were instrumented, installed at a weathered soil site, and load tested. A set of termination criteria was applied to the test piles, which includes a minimum blow count from the standard penetration test, a specified final jacking force, a minimum of four loading cycles at the final jack force, and a specified maximum rate of pile settlement at the final jacking force. The two test piles passed all required acceptance criteria. Punching shear failure occurred at the failure load for both piles and the shaft resistance consisted of approximately 80% of the pile capacity. Based on the results of field tests in Hong Kong and Guangdong and several centrifuge tests, a relation between the ratio of the pile capacity Pult to the final jacking force PJ and the pile slenderness ratio is established. The Pult/PJ ratio is larger than 1.0 for long piles but may be smaller than 1.0 for short piles. A regression equation is established to determine the final jacking force, which is suggested as a termination criterion for jacked piles. The final jacking force can be smaller than 2.5 times the design load for very long piles, but should be larger than 2.5 times the design load for piles shorter than 37 times the pile diameter.  相似文献   

12.
This paper presents a method for predicting the nonlinear response of torsionally loaded piles in a two-layer soil profile, such as a clay or sand layer underlain by rock. The shear modulus of the upper soil is assumed to vary linearly with depth and the shear modulus of the lower soil is assumed to vary linearly with depth and then stay constant below the pile tip. The method uses the variational principle to derive the governing differential equations of a pile in a two-layer continuum and the elastic response of the pile is then determined by solving the derived differential equations. To consider the effect of soil yielding on the behavior of piles, the soil is assumed to behave linearly elastically at small strain levels and yield when the shear stress on the pile-soil interface exceeds the corresponding maximum shear resistance. To determine the maximum pile-soil interface shear resistance, methods that are available in the literature can be used. The proposed method is verified by comparing its results with existing elastic solutions and published small-scale model pile test results. Finally, the proposed method is used to analyze two full-scale field test piles and the predictions are in reasonable agreement with the measurements.  相似文献   

13.
Pile Response to Lateral Spreads: Centrifuge Modeling   总被引:1,自引:0,他引:1  
The paper presents results of eight centrifuge models of vertical single piles and pile groups subjected to earthquake-induced liquefaction and lateral spreading. The centrifuge experiments, conducted in a slightly inclined laminar box subjected to strong in-flight base shaking, simulate a mild, submerged, infinite ground slope containing a 6-m-thick prototype layer of liquefiable Nevada sand having a relative density of 40%. Two- and three-layer soil profiles were used in the models, with a 2-m-thick nonliquefiable stratum placed below, and in some cases also above the liquefiable Nevada sand. The model piles had an effective prototype diameter, d, of 0.6 m. The eight pile models simulated single end-bearing and floating reinforced concrete piles with and without a reinforced concrete pile cap, and two 2×2 end-bearing pile groups. Bending moments were measured by strain gauges placed along the pile models. The base shaking liquefied the sand layer and induced free field permanent lateral ground surface displacements between 0.7 and 0.9 m. In all experiments, the maximum permanent bending moments, Mmax occurred at the boundaries between liquefied and nonliquefied layers; the prototype measured values of Mmax ranged between about 10 and 300 kN?m. In most cases the bending moments first increased and then decreased during the shaking, despite the continued increase in free field displacement, indicating strain softening of the soil around the deep foundation. The largest values of Mmax were associated with single end-bearing piles in the three-layer profile, and the smallest values of Mmax were measured in the end-bearing pile groups in the two-layer profile. The companion paper further analyzes the Mmax measured in the single pile models, and uses them to calibrate two limit equilibrium methods for engineering evaluation of bending moments in the field. These two methods correspond to cases controlled, respectively, by the pressure of liquefied soil, and by the passive pressure of nonliquefied layers on the pile foundation.  相似文献   

14.
Development of Downdrag on Piles and Pile Groups in Consolidating Soil   总被引:1,自引:0,他引:1  
Development of pile settlement (downdrag) of piles constructed in consolidating soil may lead to serious pile foundation design problems. The investigation of downdrag has attracted far less attention than the study of dragload over the years. In this paper, several series of two-dimensional axisymmetric and three-dimensional numerical parametric analyses were conducted to study the behavior of single piles and piles in 3×3 and 5×5 pile groups in consolidating soil. Both elastic no-slip and elasto-plastic slip at the pile–soil interface were considered. For a single pile, the downdrag computed from the no-slip elastic analysis and from the analytical elastic solution was about 8–14 times larger than that computed from the elasto-plastic slip analysis. The softer the consolidating clay, the greater the difference between the no-slip elastic and the elasto-plastic slip analyses. For the 5×5 pile group at 2.5 diameter spacing, the maximum downdrag of the center, inner, and corner piles was, respectively, 63, 68, and 79% of the maximum downdrag of the single pile. The reduction of downdrag inside the pile group is attributed to the shielding effects on the inner piles by the outer piles. The relative reduction in downdrag (Wr) in the 5×5 pile group increases with an increase in the relative bearing stiffness ratio (Eb/Ec), depending on the pile location in the group. Compared with the relative reduction in dragload (Pr), Wr at the corner pile is less affected by the group interaction for a given surcharge load. This suggests that the use of sacrificing piles outside the pile group will be more effective on Pr than on Wr. Based on the three cases studied, the larger the number of piles in a group, the greater the shielding effects on Wr. Relatively speaking, Wr is more sensitive to the total number of piles than to the pile spacing within a pile group.  相似文献   

15.
The characteristic load method (CLM) can be used to estimate lateral deflections and maximum bending moments in single fixed-head piles under lateral load. However, this approach is limited to cases where the lateral load on the pile top is applied at the ground surface. When the pile top is embedded, as in most piles that are capped, the additional embedment results in an increased lateral resistance. A simple approach to account for embedment effects in the CLM is presented for single fixed-head piles. In practice, fixed-head piles are more typically used in groups where the response of an individual pile can be influenced through the adjacent soil by the response of other nearby piles. This pile–soil–pile interaction results in larger deflections and moments in pile groups for the same load per pile compared to single piles. A simplified procedure to estimate group deflections and moments was also developed based on the p-multiplier approach. Group amplification factors are introduced to amplify the single pile deflection and bending moment to reflect pile–soil–pile interaction. The resulting approach lends itself well to simple spreadsheet computations and provides good agreement with other generally accepted analytical tools and with values measured in published lateral load tests on groups of fixed-head piles.  相似文献   

16.
This paper presents experimental results of 1-g shaking table model tests on a 3×3 pile group behind a sheet-pile quay wall. The main purpose was to understand the mechanisms of liquefaction-induced large ground deformation and the behavior of the pile group subjected to the lateral soil displacement. The sheet-pile quay wall was employed to trigger the liquefaction-induced large deformation in the backfill, and a study was made of the effect of several parameters such as soil density, amplitude and frequency of input motion, pile head fixity, and superstructure on the magnitude of soil lateral displacement and the maximum lateral force of liquefied soil. Furthermore, distribution of the maximum lateral force within the group pile was thoroughly studied. It was found that the force varies depending on the position of individual piles in the group. To evaluate the contribution of each pile in the total lateral force, a new two-dimensional parameter that is called contribution index was introduced and recommended values for each pile were suggested. Finally, it is concluded that displacement and velocity of soil are the most important parameters that affect the distribution of the lateral forces in the group pile, and these two parameters are highly dependent on the configuration of the ground (geometry).  相似文献   

17.
The principal focus of this study is the development of a robust macroelement model for soil–pile interaction under cyclic loads. The model incorporates frictional forces and formation of gaps at the soil–pile interface as well as hysteretic behavior of the soil. The plastic envelope of the soil behavior is modeled via the so-called p–y approach, outlined in American Petroleum Institute’s guidelines for design of foundation piles for offshore platforms. The macroelement is an intuitive assembly of various basic elements, each of which incorporating a particular aspect of the soil–pile interaction. The modular structure of this macroelement allows straightforward adaptation of improved constitutive models for its building blocks. Herein, we focus on large-diameter, cast-in-drilled-hole reinforced concrete piles (piers) that are partially or fully embedded in soil. These types of piles are frequently used as support structures in highway construction. Consequently, the numerical robustness of the interaction model is assessed with parametric studies on pile systems and soil types relevant to this type of construction. Both elastic and inelastic pile behaviors are considered in the parametric studies. The results indicate that the proposed interaction element is numerically robust, and thus, amenable to routine structural analysis.  相似文献   

18.
Rotational Restraint of Pile Caps during Lateral Loading   总被引:1,自引:0,他引:1  
A pure fixed-head (zero-rotation) condition at the top of a group of laterally loaded piles is seldom achievable in the field, even when piles are installed in a group that is “rigidly” constrained by a stiff concrete pile cap. Assuming complete fixity during design (zero rotation at the pile head) can result in underestimated values of pile-head deflection, and incorrect estimates of the magnitude and the location of maximum bending moments. A simple and practical approach is presented for estimating the moment restraint that is provided by the pile cap at the top of a pile group. The moment restraint, represented by the rotational restraint coefficient (KMθ), serves as a boundary condition for analyzing groups of laterally loaded piles. Full-scale field tests performed on two pile groups with concrete pile caps show that the proposed method for estimating rotational restraint provides results that are in good agreement with measured field performance.  相似文献   

19.
For bridges supported by piles, acceptable system performance under seismic loading depends on effective pile-to-cap connections. A fixed pile-to-cap connection is often desirable to help control deflections during lateral loading when soft soils are present. While reinforcement bar cages that extend from the pile into the cap are effective in providing a fixed pile-to-cap connection, it is more economical to rely on pile embedment to provide fixity and moment resistance. This study investigated embedded pile-to-cap connections for concrete-filled pipe piles. Four full-scale specimens, each consisting of a cap with two piles, were investigated in the field under cyclic loading. The specimens had minimal reinforcement and varying amounts of pile embedment. Results show that the moment resistance of pile-to-cap connections can be significantly greater than what is typically calculated based on the flexural reinforcement and embedment bearing. Excess moment capacity may be explained by friction between the pile and the cap at the connection. This friction mechanism is described and discussed in the context of experimental results from other studies.  相似文献   

20.
Pile Spacing Effects on Lateral Pile Group Behavior: Load Tests   总被引:2,自引:0,他引:2  
To investigate group interaction effects as a function of pile spacing, full-scale cyclic lateral load tests were performed on pile groups in stiff clay spaced at 3.3, 4.4, and 5.65 pile diameters in the direction of loading with as many as five rows of piles. Group interaction effects decreased considerably as pile spacing increased from 3.3 to 5.65D. Lateral resistance was a function of row location in the group, rather than location within a row. For a given deflection, the leading (first) row piles carried the greatest load, while the second and third row piles carried successively smaller loads. Fourth and fifth row piles carried about the same load as the third row piles. For a given load, the maximum bending moments in the trailing row piles were greater than those in the lead row, but these effects decreased as spacing increased. Cyclic loading reduced the peak load by about 15% after 15 cycles; however, distribution of load within the pile group was essentially the same as at the peak load. Gaps significantly reduced resistance for small deflections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号