首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
传统SOI DTMOS器件固有的较大体电阻和体电容严重影响电路的速度特性,这也是阻碍SOI DTMOS器件应用于大规模集成电路的最主要原因之一.有人提出通过增大硅膜厚度的方法减小器件体电阻,但随之而来的寄生体电容的增大严重退化了器件特性.为了解决这个问题,提出了一种SOI DTMOS新结构,该器件可以分别优化结深和硅膜的厚度,从而获得较小的寄生电容和体电阻.同时,考虑到沟道宽度对体电阻的影响,将该结构进一步优化,形成侧向栅-体连接的器件结构.ISE-TCAD器件模拟结果表明,较之传统SOI DTMOS器件,该结构的本征延时和电路延时具有明显优势.  相似文献   

2.
50nm SOI-DTMOS器件的性能   总被引:1,自引:0,他引:1  
陈国良  黄如 《半导体学报》2003,24(10):1072-1077
利用二维器件模拟软件ISE对5 0nm沟道长度下SOI DTMOS器件性能进行了研究,并与常规结构的SOI器件作了比较.结果表明,在5 0nm沟长下,SOI DTMOS器件性能远远优于常规SOI器件.SOI DTMOS器件具有更好的亚阈值特性,其亚阈值泄漏电流比常规SOI器件小2~3个数量级,从而使其具有更低的静态功耗.同时,SOI DTMOS器件较高的驱动电流保证了管子的工作速度,并且较常规SOI器件能更有效地抑制短沟道器件的穿通效应、DIBL及SCE效应,从而保证了在尺寸进一步减小的情况下管子的性能.对SOI DTMOS器件的物理机制进行了初步分析,揭示了其性能远优于常规结构的物理本质  相似文献   

3.
毕津顺  海潮和 《半导体学报》2006,27(9):1526-1530
将Ti硅化物-p型体区形成的反偏肖特基势垒结构引入绝缘体上硅动态阈值晶体管.传统栅体直接连接DTMOS,为了避免体源二极管的正向开启,工作电压应当低于0.7V.而采用反偏肖特基势垒结构,DTMOS的工作电压可以拓展到0.7V以上.实验结果显示,室温下采用反偏肖特基势垒SOI DTMOS结构,阈值电压可以动态减小200mV.反偏肖特基势垒SOI DTMOS结构相比于传统模式,显示出优秀的亚阈值特性和电流驱动能力.另外,对浮体SOI器件、传统模式SOI器件和反偏肖特基势垒SOI DTMOS的关态击穿特性进行了比较.  相似文献   

4.
SOI反偏肖特基势垒动态阈值MOS特性   总被引:1,自引:0,他引:1  
将Ti硅化物-p型体区形成的反偏肖特基势垒结构引入绝缘体上硅动态阈值晶体管.传统栅体直接连接DTMOS,为了避免体源二极管的正向开启,工作电压应当低于0.7V.而采用反偏肖特基势垒结构,DTMOS的工作电压可以拓展到0.7V以上.实验结果显示,室温下采用反偏肖特基势垒SOI DTMOS结构,阈值电压可以动态减小200mV.反偏肖特基势垒SOI DTMOS结构相比于传统模式,显示出优秀的亚阈值特性和电流驱动能力.另外,对浮体SOI器件、传统模式SOI器件和反偏肖特基势垒SOI DTMOS的关态击穿特性进行了比较.  相似文献   

5.
低压高速CMOS/SOI器件和电路的研制   总被引:1,自引:1,他引:0  
采用全耗尽CMOS/SIMOX工艺成功地研制出了沟道长度为0.5μm的可在1.5V和3.0V电源电压下工作的SOI器件和环形振荡器电路.在1.5V和3.0V电源电压时环振的单级门延迟时间分别为840ps和390ps.与体硅器件相比,全耗尽CMOS/SIMOX电路在低压时的速度明显高于体硅器件,亚微米全耗尽CMOS/SOI技术是低压低功耗和超高速集成电路的理想选择.  相似文献   

6.
低压、低功耗SOI电路的进展   总被引:3,自引:1,他引:2  
最近 IBM公司在利用 SOI(Silicon- on- insulator)技术制作计算机中央处理器 (CPU)方面取得了突破性的进展 ,该消息轰动了全世界。SOI电路最突出的优点是能够实现低驱动电压、低功耗。文中介绍了市场对低压、低功耗电路的需求 ,分析了 SOI低压、低功耗电路的工作原理 ,综述了当前国际上 SOI低压、低功耗电路的发展现状。  相似文献   

7.
研究了基于IBM 8RF 130 nm工艺部分耗尽绝缘体上Si(PDSOI)动态阈值晶体管(DTMOS)体电阻、体电容以及体电阻和体电容乘积(体延迟)随Si膜厚度和器件宽度的变化.结果表明,Si膜厚度减小会导致体阻增大、体电容减小,但是体电阻和体电容的乘积却明显增大.Si膜厚度从200 nm减小到80nm,体延迟增加将近两个数量级.器件宽度增加使得体电阻和体电容都明显增大,DTMOS电路延迟也因此指数递增.推导出了PDSOI DTMOS的延迟模型,为SOI DTMOS器件设计提供了参考.  相似文献   

8.
采用SOI/CMOS工艺成功地研制出沟道长度为0.8μm的SOI器件和环振电路,在5V和3V电源电压时51级环振的单门延迟时间分别为82ps和281ps,速度明显高于相应的体硅电路.由于采用硅岛边缘注入技术,寄生边缘管得到较好的抑制.对沟道宽度对SOI器件特性的影响进行了讨论.实验表明SOI器件是高速和低压低功耗电路的理想选择.  相似文献   

9.
对比研究了20 μm/0.35 μm的SOI(绝缘体上硅)普通MOS和DTMOS(动态阈值MOS)的温度特性.从20~125℃,普通MOS驱动电流减小了12.2%,而DTMOS驱动电流增大了65.3%.SOI DTMOS降低了垂直沟道方向的电场,减少了载流子表面散射,因此阈值电压随温度减小占主导,驱动电流随着温度升高而增大.SOl DTMOS优秀的温度特性,使之非常适合于低压、低功耗、高温应用.  相似文献   

10.
文摘     
SOI——突破硅材料与硅集成电路限制的新技术与体硅材料和器件相比,SOI具有许多独特的优越性,例如高开关速度、高密度、抗辐照、无闩锁效应等,因而被称为21世纪的微电子技术而引起人们越来越多的关注.SOI技术正走向商业应用阶段,特别是应用于低压、低功耗CMOS电路,抗辐照器件和高温电子器件等.结合第9届SOI工艺和器件国际会议的内容,综述了SOI材料和器件的最新进展.(NO.8)国内X射线光刻技术研究进展  相似文献   

11.
This work presents a systematic comparative study of the influence of various process options on the analog and RF properties of fully depleted (FD) silicon-on-insulator (SOI), partially depleted (PD) SOI, and bulk MOSFET's with gate lengths down to 0.08 /spl mu/m. We introduce the transconductance-over-drain current ratio and Early voltage as key figures of merits for the analog MOS performance and the gain and the transition and maximum frequencies for RF performances and link them to device engineering. Specifically, we investigate the effects of HALO implantation in FD, PD, and bulk devices, of film thickness in FD, of substrate doping in SOI, and of nonstandard channel engineering (i.e., asymmetric Graded-channel MOSFETs and gate-body contacted DTMOS).  相似文献   

12.
The authors analyze the influence of temperature on hot-carrier degradation of silicon-on-insulator (SOI) dynamic threshold voltage MOS (DTMOS) devices. Both low and high stress gate voltages are used. The temperature dependence of the hot-carrier effects in DTMOS devices is compared with those in SOI partially depleted (PD) MOSFETs. Possible physical mechanisms to explain the obtained results are suggested. This work shows that even if the stress gate voltage is low, the degradation of DTMOS devices stressed at high temperature could be significant.  相似文献   

13.
In this paper, low-frequency noise (LFN) in N- and P-channel dynamic-threshold (DT) MOSFETs on Unibond substrate (SOI) is thoroughly investigated and, especially, an improved formulation of classical McWhorter’s noise model is proposed. In order to confirm our approach, an experimental comparison between body tied and DTMOS on SOI substrate has been achieved in terms of LFN behaviour. Furthermore, two different types of DTMOS transistors have been used: with and without current limiter. The LFN in DTMOS is analysed in ohmic and saturation regimes and the impact of the use of a current limiter (clamping transistor) is thoroughly analysed. An explanation based on floating body effect inducing excess noise is also proposed.  相似文献   

14.
In this paper, we report the performance of a new photodetector fabricated on SOI substrate using a standard CMOS process. The photodetector is formed by connecting the gate and the body of a NMOSFET. The gate-body terminal is left floating so that the potential can be modulated by illumination. The depletion region induced by the floating gate separates the optically generated electron-hole pairs in the direction perpendicular to the current. This increases the body potential and induces positive charges to the gate due to the tied gate and body. It results in a further turn on of the NMOSFET and extra optical current. The gain behavior under different illumination is characterized and explained by transistor theory. A wide signal range of more than six orders of magnitude and a high responsivity of about 1000 A/W have been obtained with an operating voltage as low as 0.2 V. The device scaling properties, noise behavior and transient response are also studied  相似文献   

15.
A power dissipation model for SOI dynamic threshold voltage MOSFET (DTMOS) inverter is proposed for the first time. The model includes static, switching and short-circuit power dissipation. For the switching power dissipation, we have considered both the load capacitance and the device parasitic capacitances. Modeling of the short-circuit power dissipation is based on long-channel DC model for simplicity. The comparison of power dissipation and gate delay between conventional SOI CMOS and SOI DTMOS inverters concludes that DTMOS inverter is better in performance while consumes more power, and its advantage over floating-body SOI inverter diminishes as the power supply approaches 0.7 V  相似文献   

16.
The effects of different substrate-contact structures (T-gate and H-gate) dynamic threshold voltage silicon-on-insulator (SOI) nMOSFETs (DTMOS) have been investigated. It is found that H-gate structure devices have higher driving current than T-gate under DTMOS-mode operation. This is because H-gate SOI devices have larger body effect factor (/spl gamma/), inducing a lager reduction of threshold voltage. Besides, it is found that drain-induced-barrier-lowering (DIBL) is dramatically reduced for both T-gate and H-gate structure devices when devices are operated under DTMOS-mode.  相似文献   

17.
In this paper the hot carrier degradation behavior of the SOI dynamic-threshold-voltage nMOSFET’s (n-DTMOSFET’s) is investigated based on the forward gated-diode configuration. With peak diode current as an indicator, the hot carrier induced degradation of SOI n-DTMOSFET’s is compared with the corresponding SOI nMOSFET’s. Due to the connection of the gate and the body and thus the positive-biased source–body and drain–body junction, the SOI n-DTMOSFET’s exhibit lower peak diode current than the conventional counterparts, showing smaller generated defect density and thus lower hot carrier induced degradation. The generated defect distribution in SOI n-DTMOSFET is analyzed. It is shown that despite of the tied gate-body, the peak of the generated defect density tends to lie in the gate-to-drain overlap region. The defect distribution exerts different influences on the diode current of the long channel device and short channel device with different electric field. Moreover, even with the positive biased body, the generated defects in SOI DTMOSFT are more apt to flow to front interface rather than back interface, resulting in the more severe degradation of the front interface in SOI n-DTMOSFET’s. This gives the main flow direction of the generated defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号