首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The hard-surface cleaning performance of various nonionic homologs was evaluated as a function of carbon chain length, ethylene oxide (EO) content, blending and concentration. Results show carbon chain length to be very important to hard-surface cleaning. Performance significantly increases as carbon-chain length decreases, probably as a result of an increase in solvency properties as carbon chain length is decreased. EO content is also important, particularly if nonionics with longer carbon chain lengths are used. Surfactant concentration (dilution) has little effect on the optimum ethylene oxide content but significantly affects the optimum carbon chain length of the hydrophobe. With 5% homolog solutions, the optimally performing nonionic contains a C6 hydrophobe, but with 0.2% solutions, the optimal carbon chain length is shifted to the C8–C10 range. This is thought to result from a trade-off between the surfactant and solvent properties of the nonionic. Overall results show the optimal nonionic for hard-surface cleaning to consist of a blend of C6, C8 and C10 alcohols ethoxylated to a 50% EO level. Commonly used surfactant systems, e.g., alkylphenol ethoxylates and alkylphenol ethoxylate (APE)-butyl cellosolve (BC) blends, were also examined. Results show that alkylphenol ethoxylates give relatively poor performance compared with lower molecular weight linear nonionics because of the large size of their hydrophobe. Under concentrated use, a synergism does exist between APE and BC, but under dilute conditions, the addition of BC is ineffective. BC does not help the performance of low molecular weight nonionics. Surfactant-soil diffusion studies indicate that surfactant penetration of the soil may be the primary mechanism involved in the hard-surface cleaning of solid soils. Presented May 10, 1983, at the 74th Annual Meeting of the AOCS, Chicago, IL.  相似文献   

2.
Methyl ester ethoxylates are a new class of ethylene oxide (EO)-derived surfactants. Little is known about the impact of structural variations on their performance properties. The effects of carbon chain length, EO content, the degree of unsaturation of the methyl ester feedstock, and feedstock purity were examined for their impact on both physical properties and surfactant performance properties. Physical properties examined included surface properties (surface tension, critical micelle concentration, surface excess adsorption), melting point, water solubility, viscosity, foam stability, color, clarity, and odor. The impact of molecular structure on performance was examined for various applications, including laundry detergents, dishwashing detergents, and hard-surface cleaners. Presented at the AOCS Annual Meeting & Expo, May 1997, Seattle, Washington.  相似文献   

3.
Dehydroabietates with poly(ethylene oxide) chains of average m=12, 17, and 45 units [DeHab(E) m ] were synthesized. The adsorption at the liquid-vapor interface was measured, and the adsorbed amount and critical micelle concentrations (CMC) were determined. The foamability, the foam stability, wetting properties, and cloud points, with and without salt content, were studied. The results were compared with common linear alkyl ethoxylates, nonylphenol ethoxylates, and cholesterol ethoxylates. The dehydroabietic acid as hydrophobe was found to result in the same CMC as a linear dodecyl chain. DeHab(E)45 was found to be insoluble above 400 mg/L, but the surface tensions at lower concentrations were similar to those of the C11–13E38–40 surfactants, which exhibit CMC in aqueous media. The foaming behavior of the DeHab(E)12 and DeHab(E)17 surfactants was about the same as for common linear C n E m surfactants. The foamability as well as the foam stability increased with ethylene oxide (EO) chain length. The cloud point was depressed by increased salt concentration and increased with the number of EO units in the head group. The cloud point was significantly lower than for the corresponding surfactant with a dodecyl chain with similar EO chain length. The wetting results, obtained by measuring the contact angle at similar surface tensions, indicate that surfactants of the DeHab(E) m type are more efficient wetting agents than both disaccharide sugar surfactants and C n E m type surfactants.  相似文献   

4.
Carbonates are a class of compounds that have recently found increasing interest in commercial applications owing to their physical properties and relatively straightforward synthesis. In this work, physical and fuel properties of five straight-chain C17–39 and three branched C17–33 oleochemical carbonates were investigated. These properties included cetane number (CN), low-temperature properties, (kinematic) viscosity, lubricity, and surface tension. The carbonates studied had CN ranging from 47 to 107 depending on carbon chain length and branching. For the same number of carbons, the CN of carbonates were lower than those of FA alkyl esters owing to interruption of the CH2 chain by the carbonate moiety. Kinematic viscosities at 40°C ranged from 4.9 to 22.6 mm2/s whereas m.p. ranged from +3 to below −50°C depending on the carbonate structure. High-frequency reciprocating rig testing showed the neat carbonates to have acceptable lubricity that improved as chain length increased. Finally, the carbonate's ability to influence cold-flow properties in biodiesel (methyl soyate) and lubricity in low-lubricity ultra-low sulfur diesel were examined. The carbonates studied did not significantly affect cold flow or lubricity properties at concentrations up to 10,000 ppm (1 wt%). The properties of the carbonates resemble those of fatty alkyl esters with similar trends resulting from compound structure.  相似文献   

5.
The highest effectiveness of detergency for nonionic surfactants is observed in the proximity of the cloud point. This phenomenon is primarily influenced by surfactant molecular structure, such as carbon chain length and type of the hydrophilic components. Target of this investigation is to identify a relationship between the cloud point and the structure of nonionic surfactants based on ethoxylated (CnEm), ethoxylated-propoxylated (CnEmPp) and propoxylated-ethoxylated (CnPpEm) fatty alcohols. Three hundred and fifty nonionic surfactants have been prepared for this purpose. These surfactants differ in the C-chain lengths, C4/C6 to C20/C22, and the amount of ethylene oxide (EO range [n] 2–22 ethoxylation) and propylene oxide (PO range [p] 0–12 propoxylation) moieties. Mapping the differences in the performance allows us to propose a high-accuracy topological model describing the structure influence on the cloud point.  相似文献   

6.
Performance of sulfoxylated fatty acid methyl esters   总被引:3,自引:0,他引:3  
Sulfoxidation of fatty acid methyl esters with SO2, O2, and ultraviolet light of appropriate wavelength has led to the synthesis of methyl esters sulfonates or sulfoxylates known as Φ-MES because of the possible random position of SO3 group in the alkyl chain. This work describes experimental measurements of physical properties such as solubility and viscosity of sodium Φ-MES water solutions. Amphipathic properties such as surface tension, critical micelle concentration, wetting and foaming powers were measured as well and compared to linear alkylbenzene sodium sulfonate (LAS). Finally, stability to water hardness, dishwashing test, and detergency performance were evaluated. Expectedly, these products may be used as LAS partners either in heavy-duty powders or in hand dishwashing liquids. Experimental results on Φ-MES of varying carbon number indicate that C16 is the optimal carbon chain length.  相似文献   

7.
A series of alkyl sulphobetaine Gemini surfactants Cn‐GSBS (n = 8, 10, 12, 14, 16) was synthesized, using aliphatic amine, cyanuric chloride, ethylenediamine, N,N′‐dimethyl‐1,3‐propyldiamine and sodium 2‐chloroethane sulfonate as main raw materials. The chemical structures were confirmed by FT‐IR, 1H NMR and elemental analysis. The Krafft points differ markedly with different carbon chain length, for C8‐GSBS, C10‐GSBS and C12‐GSBS are considered to be below 0 °C and C14‐GSBS, C16‐GSBS are higher than 0 °C but lower than room temperature. Surface‐active properties were studied by surface tension and electrical conductivity. Critical micelle concentrations were much lower than dodecyl sulphobetaine (BS‐12) and decreased with increasing length of the carbon chain from 8 to 16, and can reach a minimum as low as 5 × 10?5 mol L?1 for C16‐GSBS. Effects of carbon chain length and concentration of Cn‐GSBS on crude oil emulsion stability were also investigated and discussed.  相似文献   

8.
Performance and efficiency of anionic [sodium lauryl ether sulfate (SLES) and sodium α-olefin sulfonate (AOS)] and amphoteric [cocamidopropyl betaine (CAB)] as well as nonionic [cocodiethanol amide (DEA), various ethoxylated alcohols (C12–C15–7EO, C10–7EO and C9–C11–7EO) and lauramine oxide (AO)] surfactants in various dishwashing liquid mixed micelle systems have been studied at different temperatures (17.0, 23.0 and 42.0 °C). The investigated parameters were critical micelle concentration (CMC), surface tension (γ), cleaning performance and, foaming, biodegradability and irritability of anionic (SLES/AOS) and anionic/amphoteric/nonionic (SLES/AOS/CAB/AO) as well as anionic/nonionic (SLES/AOS/DEA/AO, SLES/AOS/C12-C15-7EO/AO, SLES/AOS/C10–7EO/AO and SLES/AOS/C9–C11–7EO/AO) dishwashing surfactant mixtures. In comparison to the starting binary SLES/AOS surfactant mixture, addition of various nonionic surfactants promoted CMC and γ lowering, enhanced cleaning performance and foaming, but did not significantly affect biodegradability and irritability of dishwashing formulations. The anionic/nonionic formulation SLES/AOS/C9–C11–7EO/AO shows both the lowest CMC and γ as well as the best cleaning performance, compared to the other examined dishwashing formulations. However, the results in this study reveal that synergistic behavior of anionic/nonionic SLES/AOS/ethoxylated alcohols/AO formulations significantly improves dishwashing performance and efficiency at both low and regular dishwashing temperatures (17.0 and 42.0 °C) and lead to better application properties.  相似文献   

9.
The dynamic interfacial tension (IFT) of ethoxylated fatty acid methyl ester solutions against n‐alkanes, kerosene, and diluted heavy oil have been investigated by spinning drop interfacial tensiometry. The influences of ethylene oxide (EO) groups and alkyl chain length on IFT were investigated. The experiment results show that the water solubility decreases with an increase in alkyl chain length or a decrease in EO groups. The ability to lower the interfacial tension against hydrocarbons improves with both increasing alkyl chain length and EO group at the best hydrophilic‐lipophilic balance, which can be attributed to the enhancement of the interfacial hydrophobic interactions and the rearrangement of interfacial surfactant molecules. The mixed adsorption of surfactant molecules and surface‐active components may reduce IFT to a lower value. C18=E3 shows the best synergism with surface‐active components. However, the IFT values against pure crude oil are obviously higher than those against hydrocarbons, which may be caused by the nature of heavy oil.  相似文献   

10.
The interfacial tensions (IFT) of four low molecular weight groups of ethoxylated octylphenol-, dodecylphenol-, tetradecylphenol- and hexadecyl-phenol—formaldehyde polymeric surfactants were determined using the spinning drop method. Some noteworthy features of the interfacial behaviour of dilute aqueous solutions of 16 of these compounds and homologous hydrocarbons are discussed. An important feature is that these surfactants behave similarly to monomeric ones in their hydrocarbon scan, that is they have a minimum IFT value against a particular member of a homologous hydrocarbon series. The magnitudes of the tension at minimum (γmin) values obtained in this study are of the order of ‘ultralow’ (10?2-10?3 mNm?1). The nmin values of these polymeric nonionic surfactants decrease with increasing hydrophilicity, that is decrease with the increase of ethylene oxide units condensed per mole of alkylphenol unit in the polymeric surfactants studied. In this case, the downward shift in nmin is smaller and apparently not linearly related to the number of EO units. Increasing the hydrophobicity of these polymeric nonionics, that is increasing the length of the alkyl chain from C8 to C16, resulted in an increase in the nmin values obtained. For each of the investigated groups, the lowest γmin values are obtained with polymeric surfactants having the highest EO content. The optimum low tension performance occurs at the low end of the equivalent alkane carbon number scale (at EACNs below 6). Under the influence of added electrolytes these EACNs were shifted to higher values.  相似文献   

11.
Alkyldimethyl (C n DMPO) with chain lengths of n = 8 (octyl), 10 (decyl), 12 (dodecyl), and 14 (tetradecyl) as well as alkyldiethyl (C n DEPO) phosphine oxides with chain lengths of n = 10, 12, and 14 were synthesized and purified to study how the adsorption properties and the location of the miscibility gap of these surfactants depend on the size of the head group and on the length of the alkyl chain. After surfactant purification, the surface tension isotherms were determined from which the cmc, the minimum surface tension σcmc, the maximum surface concentration Γmax, and the minimum surface area A min were obtained. As expected, for one homologous series, a decrease in the cmc and an increase in Γmax was observed with increasing alkyl chain length. For two surfactants of the same alkyl chain length, the cmc values of the C n DEPO surfactants are approximately two times lower than those of the C n DMPO surfactants. However, the Γmax values of C n DEPO are lower than those of C n DMPO as two ethyl chains are sterically more demanding than two methyl chains. In addition to the adsorption properties, the location of the miscibility gap as a function of the alkyl chain length and the head group size was studied. Its location depends on the total number of carbon atoms and not primarily on the length of the main alkyl chain. This observation reflects the decreasing water solubility which can be tuned by increasing the length of either the main alkyl chain or of the shorter head group chains.  相似文献   

12.
Commercially available alkyl alcohol ethoxylates have a broad distribution of ethylene oxide (EO) units and also a somewhat narrower distribution of alkyl chain length. Generally, the purer the surfactant sample (narrower distribution), the better is its detergency performance, and detergency peaks at the phase inversion temperature (PIT) for a given oil. However, in real detergency processes this may not hold true since soils are typically mixtures of several oily components, and temperature variations are significant. Therefore, if a polydispersity index (PDI) of ethoxylates is defined as the ratio of weight average EO moles to number average EO moles in the sample, then it is conceivable that an optimal PDI might be obtained. We compared the detergency of hexadecane for pentaethylene glycol monododecyl alcohol (C12EO5) samples in a broad PDI range, using an oil-soluble dye. While detergency at 55°C (PIT of hexadecane with C12EO5) decreases monotonically with increasing creasing PDI, average detergency over a 20°C temperature range around the PIT tends to show a maximum at PDI of ca. 1.1 (narrow-range ethoxylate). Similarly, for a mixture of undecane/hexadecane/tetracosane (30∶50∶20 w/w/w) for which the average PIT is approximately the same as that of hexadecane detergency at 55°C shows a maximum as a function of PDI at a value of ∼1.37 (broad-range ethoxylate). All detergency results are in general agreement with the reverse trends in oil/water interfacial tension and suggest that, having decided the optimal EO moles for a given application based on PIT, one can further improve the performance of alcohol ethoxylates in real detergency processes by tuning their polydispersity.  相似文献   

13.
Differential scanning calorimetry studies on saturated monoacid triglycerides were extended to include most odd and even chain lengths from tricaprylin (C8) through tritriacontanoin (C30). Two β’-forms were common with triglycerides C15 through C24: shorter odd chain length triglycerides (C9-C13) exhibited only one β’-form; short even chain length triglycerides (C8-C14) exhibited three. Odd chain length C21 and C23 triglycerides showed two β-forms. Triglycerides of even chain lengths greater than C21 produced two α-forms. Apparent energies of phase excitation for α-form transformations (determined from scans at different heating rates) showed odd-even alternation for short chain lengths, but increased linearly with chain length above C14, evidencing the importance of extended chain conformation and interactions as determinants of polymorph properties. Changes in melting point patterns, particularly for β’ and β-forms, at C14 correlated with the change in apparent phase excitation energy. Comparisons of X-ray data with dimensions from space-filling models and agreement between observed entropies of fusion and values calculated for probabilistic models also emphasize the importance of extended chain conformation and suggest configurational differences, and possibly different polymorph conversion pathways for odd versus even chain length triglycerides.  相似文献   

14.
The surface properties of binary mixtures of anionic sodium methyl ester ??-sulfo alkylate (C m MES) and cationic alkyl trimethylammonium bromide (C n TAB) of different carbon chain length have been studied in the present work. The critical micelle concentration (CMC) that was obtained from the plots of surface tension (??) versus concentration showed that mixed surfactants have CMC values that were about 10 times lower than their single components. The large negative values for both interaction parameters suggest the existence of strong synergism between the oppositely charged surfactant molecules. The effect of hydrocarbon chain length of either surfactant was also compared and results showed that the effect of cationic surfactant chain length dominated that of the anionic surfactants. It was also discovered that certain mixed surfactant combinations behave differently from the expected trend.  相似文献   

15.
Phenyl isomer distributions, within current commercial limits of HF and A1C13 linear alkylbenzene sulfonates (LAS), have little effect on dishwashing performance in light-duty liquids (LDL), detergency performance in heavy-duty powders (HDP), and interfacial tension value. The most important factor in determining performance differences among commercial LAS samples is carbon chain homolog distribution. Both HF and A1C13 LAS perform equally well and can be used interchangeably in high-performance products. The optimum for foam stability in light-duty liquids shifts towards shorter alkyl chain length as water hardness increases. At 0 ppm water hardness the optimum occurs at C13: at 50–150 ppm the optimum moves to C11 and C12; and above 150 ppm the optimum shifts to include C10, C11 and C,12. The detergency performance optimum range in a phosphate built heavy-duty powder at 50 and 150 ppm water hardness includes the C12, C13 and C14 alkyl chain lengths. In a nonphosphate built powder the optimum is similar at 50 ppm hardness to that of a phosphate built powder, but shifts at 150 ppm hardness to include C11, C12 and C13.  相似文献   

16.
A matrix of coating variables, nonassociative versus associative thickeners, different latex median particle sizes, individual surfactants and colorants [carbon black (CB), red, and yellow pigments], was examined for their influence on variances in coatings rheology and color development. Within the different coating groups, the variable of interest in this study was the surfactant added to the colorant formulation. In all three colorant formulations, sodium dodecyl sulfate (an anionic surfactant) provided poorer color development (CD) than in applied formulations containing an equivalent nonylphenol oxyethylene (EO) surfactant. In CB formulations, nonionic surfactants with higher EO content provide improved color development at low (2 mM) concentrations, but near equality in CD is achieved with low EO surfactants at higher concentrations. In contrast to CB formulations, red and yellow colorants exhibit good color development with high EO content nonionic surfactants only at low nonionic surfactants concentrations. This variance appears to be related to the interactions of surfactants with inorganic pigments (talc and laponite) in the colorant formulation. The coating’s rheology is related to latex, thickeners, and surfactant components of the paint, as has been noted in previous studies, but not to the nature of the color pigment. The viscosity of the hydroxyethyl cellulose (nonassociative type) and HEUR (associative type) thickened paint decreased with colorant addition due to dilution effects. There were no unusual deviations with the NP(EO)x surfactants, except when a large hydrophobe nonionic surfactant [e.g., C18H37(EO)100] is added. In HEC thickened coatings, the viscosity decreases when C18H37-(EO)100 is in the colorant due to that surfactant inhibiting depletion flocculation. In the C18H37(EO)100 coatings containing the HEUR thickener, significant increases in viscosity were observed, above the dilution values observed with the colorant addition. This is related to the viscosity maximum in the low concentration of HEUR with the C18H37(EO)100 surfactant. Color development is independent of the viscosity profile of the coating. Presented in part at the 81st Annual Meeting of the Federation of Societies for Coatings Technology, November 13–14, 2003 in Philadelphia, PA.  相似文献   

17.
The rheological properties of hydrophobically modified ethoxylated urethane (HEUR) were investigated in the presence of a nonionic surfactant, polyoxyethylene stearyl ether (C18(EO)20). The presence of nonionic surfactants played an important role in tuning the rheological properties of HEUR aqueous solutions. Observing both plateau modulus and viscoelastic relaxation time of HEUR aqueous solutions with varying the concentration of C18(EO)20 allowed us to demonstrate that C18(EO)20 readily interacts with the hydrophobic segments of HEUR polymers, which eventually formed a strong micellar network. Moreover, the micellar network formed at a critical concentration of C18(EO)20, ∼0.6% w/v, was indeed stable against both ionic strength and pH in the aqueous medium and complex formulations, such as a colloid suspension and an oil-in-water emulsion, thus providing more practical applications as thickeners for a wide variety of complex formulations.  相似文献   

18.
In this study, propylene glycol-based glycosides were obtained using an acetalization reaction in which glucose was first reacted with propylene glycol. Subsequently, the propylene glycol glycoside was reacted with alkyl glycidyl ether of varying carbon chain lengths (i.e., 08-G, 10-G, 12-G, 14-G, and 16-G) to synthesize a series of glucose-based biodegradable surfactants. The experimental results show that the surface activity of the C8–C12 glucose-based surfactants increases with the carbon chain length. However, the surface activity of the C14–C16 glucose-based surfactants decreased as the carbon chain length increased. Among all the surfactants, the C12 glucose-based surfactant exhibited the most efficient emulsification ability, lowest surface tension, lowest fluorescence intensity, highest zeta potential, and good emulsification stability. The glucose-based surfactants were used as additives in natural plant dyes made from turmeric or henna to dye wool fabrics. Higher color strengths were observed in the C14 glucose-based surfactant.  相似文献   

19.
The high permeability channels would reduce the ultimate oil production resulting from excess water flooding. The objective of this paper is to prepare and evaluate a novel tough gel that can be used to significantly reduce the permeability of the fluid channels. We synthesized the hydrophobic associated hydrogel composed of poly(acrylamide-co-diacryl quaternary ammonium salts) (G(AM/DiAC)) by simple aqueous solution copolymerization method. Here, three diacryl quaternary ammonium salts are cation surfmer with different alkyl lengths (DiAC, carbon chain length?=?6, 8, 10, respectively). The gel properties, including the mechanical performance and swelling property, as well as its influencing factors were investigated. The results showed that G(AM/DiAC) hydrogel has excellent mechanical properties. It was found that its mechanical properties were dependent on the alkyl length and dosage of surfmer. When carbon chain of DiAC was C8 and the dosage of DiAC8 reached 0.5 mol%, G(AM/DiAC8) hydrogel showed the most excellent mechanical performance (tensile strengths?=?58.97 kPa, elongation-at-break?=?3712% and compressive strengths?=?100.01 kPa). The toughness mechanism derived from the increase in the sequence length and number of hydrophobic micro-blocks in the molecular chains of hydrogels. Furthermore, the hydrogels exhibited slow swelling property, in favor of deep migration and plugging high permeable layer. The swelling equilibrium time of hydrogels was prolonged by 10 days when the dosage of DiAC10 reached 0.9 mol%, by reason of the intermolecular dissociation between hydrophobic micro-blocks.  相似文献   

20.
Four anionic gemini surfactants of the sulfate type C12CnC12, where n is the spacer chain length (n = 3, 4, 6, and 10) were synthesized. The structures of these surfactants were confirmed by FT‐IR, 1H NMR, ESI mass spectra (ESI‐MS), and elemental analysis. The surface‐active properties of these compounds were investigated by means of surface tension, electrical conductivity, and fluorescence measurements. Premicellar aggregations were found for the four gemini surfactants, as revealed by the conductivity measurement. The formation of premicellar aggregates may account for the discrepancy between the critical micelle concentration (cmc) obtained by the surface tension and conductivity measurement. The cmc values of these gemini surfactants were much lower than that of sodium dodecylsulfate (SDS) and decreased monotonously with the increase of spacer chain length from 3 to 10. The effect of spacer chain length on the performance properties like foaming, emulsion stability, and lime soap dispersing ability were also studied and discussed. Practical applications : Alkyl sulfate surfactants are one of the most widely used surfactants. The new alkyl sulfate gemini surfactants synthesized in our study are more surface‐active than sodium dodecylsulfate. These gemini surfactants possess low critical micelle concentrations, high emulsion stability, and excellent lime soap dispersing ability. They have potential applications in the fields of cosmetics, detergents, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号