首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanical activation of monoclinic gibbsite (Al(OH)3) in nitrogen led to the formation of nanocrystalline orthorhombic boehmite (AlOOH) at room temperature. The boehmite phase formed after merely 3 h of mechanical activation and developed steadily as the mechanical-activation time increased. Forty hours of mechanical activation resulted in essentially single-phase boehmite, together with α-alumina (α-Al2O3) nanocrystallites 2–3 nm in size. The sequence of phase transitions in the activation-derived boehmite was as follows: boehmite to γ-Al2O3 and then to α-Al2O3 when flash-calcined at a heating rate of 10°C/min in air. γ-Al2O3 formed at 520°C, and flash calcination to 1100°C led to the formation of an α-Al2O3 phase, which exhibited a refined particle size in the range of 100–200 nm. In contrast, the gibbsite-to-boehmite transition in the unactivated gibbsite occurred over the temperature range of 220°–330°C. A flash-calcination temperature of 1400°C was required to complete the conversion to α-Al2O3 phase, with both δ-Al2O3 and θ-Al2O3 as the transitional phases. The resulting alumina powder consisted of irregularly shaped particles 0.4–0.8 μm in size, together with an extensive degree of particle agglomeration.  相似文献   

2.
Ultrafine (<0.1 μm) high-purity θ-Al2O3 powder containing 3–17.5 mol%α-Al2O3 seeds was used to investigate the kinetics and microstructural evolution of the θ-Al2O3 to α-Al2O3 transformation. The transformation and densification of the powder that occurred in sequence from 960° to 1100°C were characterized by quantitative X-ray diffractometry, dilatometry, mercury intrusion porosimetry, and transmission and scanning electron microscopy. The relative bulk density and the fraction of α phase increased with annealing temperature and holding time, but the crystal size of the α phase remained ∼50 nm in all cases at the transformation stage (≤1020°C). The activation energy and the time exponent of the θ to α transformation were 650 ± 50 kJ/mol and 1.5, respectively. The results implied the transformation occurred at the interface via structure rearrangement caused by the diffusion of oxygen ions in the Al2O3 lattice. A completely transformed α matrix of uniform porosity was the result of appropriate annealing processes (1020°C for 10 h) that considerably enhanced densification and reduced grain growth in the sintering stage. The Al2O3 sample sintered at 1490°C for 1 h had a density of 99.4% of the theoretical density and average grain size of 1.67 μm.  相似文献   

3.
A stoichiometric MgAl2O4 spinel (MAS) powder was processed in aqueous media and consolidated by gelcasting from suspensions containing 41–45 vol% solids loading. The MAS powder was first obtained by heat treating a compacted mixture of α-Al2O3 and calcined caustic MgO at 1400°C for 1 h, followed by crushing and milling. Then, its surface was passivated against hydrolysis using an ethanol solution of H3PO4 and Al(H2PO4)3. The as-treated surface MAS powder could then be dispersed in water using tetra methyl ammonium hydroxide and an ammonium salt of poly-acrylic acid (Duramax D-3005) as dispersing agents. The as-obtained stable suspensions were gelcast, dried, and sintered at 1650°C for 1–3 h. For comparison purposes, the treated powder was also compacted by die pressing of freeze-dried granules and sintered along with gelcast samples. Near-net-shape MAS components with 99.55% of the theoretical density could be fabricated by aqueous gelcasting upon sintering at 1650°C for 3 h. The MAS ceramics fabricated by gelcasting and die pressing exhibited comparable properties.  相似文献   

4.
MgAl2O4 spinel was successfully synthesized using a mechanochemical route that avoided the formation and calcination of its precursors at high temperatures. The method involved a single step in which γ-Al2O3–MgO, AlO(OH)–MgO, and α-Al2O3–MgO mixtures were milled at room temperature under air atmosphere. The formation of MgAl2O4 occurred faster with γ-Al2O3 than with AlO(OH) or α-Al2O3. After 140 h, the mechanochemical treatment of the γ-Al2O3–MgO mixture yielded 99% of MgAl2O4.  相似文献   

5.
In the presence of a fluorine mineralizer, highly aggregated, <5 μm α-Al2O3 platelet particles form by vapor transport during the thermal transformation of γ-alumina. Platelet aggregation was determined to occur by platelet inter-growth and by edge nucleation on primary α-Al203 platelets. The addition of 1010α-alumina seed particles/cm3γ–Al2O3 resulted in the development of discrete particles during the initial stage of transformation. Impingement of the growing platelets during the latter stage of transformation, however, resulted in intergrowth, a process which was not changed by seeding. Particle size distribution broadening was observed to increase with increasing HF and H2O concentrations because vapor reactant supersaturation increases the degree of edge nucleation. When initially low HF and H2O concentrations were used in seeded systems, however, essentially aggregate-free α-Al2O3 platelets of 10–15 μm were obtained.  相似文献   

6.
Ultrafine Alumina Particles Prepared by Mechanochemical/Thermal Processing   总被引:8,自引:0,他引:8  
Ultrafine alumina particles have been prepared by the mechanical milling and subsequent heat treatment of a mixture of AICI3 and CaO. Heat treatment of the as-milled powder at temperatures above 350°C and washing with water resulted in γ-Al2O3 particles 10–20 nm in size. Single phase α-Al2O3 was formed in the sample after heat treatment at 1250°C. This study demonstrates a novel process for synthesizing nanoscale alumina particles.  相似文献   

7.
Amorphous Al2O3–ZrO2 composite powders with 5–30 mol% ZrO2 have been prepared by adding aqueous ammonia to the mixed solution of aqueous aluminum sulfate and zirconium alkoxide containing 2-propanol. Simultaneous crystallization of γ-Al2O3 and t -ZrO2 occurs at 870°–980°C. The γ-Al2O3 transforms to α-Al2O3 at 1160°–1220°C. Hot isostatic pressing has been performed for 1 h at 1400°C under 196 MPa using α-Al2O3– t -ZrO2 composite powders. Dense ZrO2-toughened Al2O3 (ZTA) ceramics with homogeneous-dispersed ZrO2 particles show excellent mechanical properties. The toughening mechanism is discussed. The microstructures and t / m ratios of ZTA are examined, with emphasis on the relation between strength and fracture toughness.  相似文献   

8.
Single-crystal α-alumina (Al2O3) hexagonal platelets with a diameter of about 200 nm and 25 nm in thickness were synthesized by heating a mixture of boehmite and potassium sulfate at 1000°C for 2 h and washing with water. The potassium sulfate addition effects on the Al2O3 phase and morphology were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that potassium sulfate addition helps in the formation of single-crystal α-Al2O3 hexagonal platelets and promotes phase transformation from intermediate γ-Al2O3 to α-Al2O3.  相似文献   

9.
Mechanical mixture of γ-Al2O3 and amorphous SiO2, and diphasic Al2O3/SiO2 gels of three different compositions were synthesized. They were subjected to heat treatment to various temperatures in the range 900°–1600°C. Qualitative X-ray diffraction data show that these diphasic gels do not crystallize to a combined mixture of θ-Al2O3 and α-Al2O3 polymorphs at the intermediate stage, prior to mullite formation. Estimated mullite formation data show that the course of its formation from mixed oxides was different from that of diphasic gels. Results are compared with previous findings and the concept of Al–Si spinel formation in the phase transformation of stoichiometric diphasic gel system is substantiated.  相似文献   

10.
The dehydration, transformation, and densification of boehmite (γ-AlOOH) are enhanced by addition of γ-Al2O3 seed particles. α-Al2O3 microstructures with uniform 1- to 2-μm grain size and sintered densities 98% of theoretical are achieved at 1300°C Thermal analysis shows that γ-Al2O3 seed particles transform to α-Al2O3 before the matrix, thus controllably nucleating the transformation of θ-AI2O3 to α-Al2O3.  相似文献   

11.
α-Al2O3 platelet powders were synthesized in molten Na2SO4 flux. The size of α-Al2O3 platelets was significantly reduced when partially decomposed rather than pure Al2(SO4)3 was used as the source of Al2O3; a further reduction in the platelet size was realized through additional seeding with nanosized α-Al2O3 seeds. The addition of microsized α-Al2O3 platelet seeds significantly influenced the platelet morphology of the final powder, as well. The platelet size of the final powder was in direct proportion to the size of the platelet seeds, and was in reverse proportion to the cube root of the platelet seed content.  相似文献   

12.
An experimental study has been conducted to evaluate the formation of nano α-Al2O3 under various conditions, such as different calcining temperatures and emulsion ratios of aqueous aluminum nitrate solutions and oleic acid with a high-speed stirring mixer. Four batches of the precursor powders were calcined at three different temperatures of 1000°, 1050°, and 1100°C for 2 h and a terminal product of nano α-Al2O3 powders was obtained. The products have been identified by X-ray diffraction (XRD), specific surface area measurement scanning electron microscope, and transmission electron microscope (TEM). The XRD results show that the phase of powders is determined to be α-Al2O3, indicating that the overall process has been effective. The optimum calcination temperature of the precursor powder for crystallization of nano α-Al2O3 was found to be 1000°C for 2 h. The TEM image indicates that the particle grains have a sub-spherical shape with a mean size of 50–100 nm.  相似文献   

13.
Seeding of the Reaction-Bonded Aluminum Oxide Process   总被引:1,自引:0,他引:1  
The effect of the initial α-Al2O3 particle size in the reaction-bonded aluminum oxide (RBAO) process on the phase transformation of aluminum-derived γ-Al2O3 to α-Al2O3, and subsequently densification, was investigated. It has been demonstrated that if the initial α-Al2O3 particles are fine (∼0.2 μm, i.e., 2.9 × 1014γ-Al2O3 particles/cm3), then they seed the phase transformation. The fine α-Al2O3 decreases the transformation temperature to ∼962°C and results in a finer microstructure. The smaller particle size of the seeded RBAO decreases the sintering temperature to as low as ∼1135°C. The results confirm that seeding can be utilized to improve phase transformations and densification and subsequently to tailor final microstructures in RBAO-derived ceramics.  相似文献   

14.
In this paper, we describe variations in a boehmite (AlOOH) and oleic acid emulsion during the process of forming superfine α-Al2O3 crystallites from the mixture of oleic acid and a boehmite gel precursor. We also propose that the oleic acid decomposes under calcination, generating carbon, which can effectively prevent agglomeration of Al2O3 particles. Calcination for the present study was conducted under a reduced oxygen atmosphere, in the temperature range 25°–1100°C. Phase variations of the mixture under calcination were identified by Fourier transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The FTIR spectra were used when the mixed emulsion of oleic acid and boehmite gel was heated, to investigate the adsorption reaction of the aluminum oleate; the C—O—C cross-linking structure of oxygenation, which aided in carbon formation; and the ability of the carbon generated with α-Al2O3 during phase transformation to prevent agglomeration (vermicularity). The products were analyzed by XRD at different temperatures, and TEM was used to examine the individual diameters of the α-Al2O3 crystallites.  相似文献   

15.
This study proposes a method to form ultrafine α-Al2O3 powders. Oleic acid is mixed with Al(OH)3 gel. The gel is the precursor of the Al2O3. After it is mixed and aged, the mixture is calcined in a depleted oxygen atmosphere between 25° and 1100°C. Oleic acid evaporates and decomposes into carbon during the thermal process. Residual carbon prevents the growth of agglomerates during the formation of α-Al2O3. The phase transformation in this process is as follows: emulsion →γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3. This process has no clear θ phase. Aging the mixed sample lowers the formation temperature of α-Al2O3 from 1100° to 1000°C. The average crystallite diameter is 60 nm, measured using Scherrer's equation, which is consistent with TEM observations.  相似文献   

16.
α-alumina (α-Al2O3, corundum) fibers exhibit high thermal and chemical stability, as well as good mechanical properties, even at high temperatures. Such characteristics make them good candidates for use in composites. Nevertheless, very few methods of producing α-Al2O3 fibers are available. In the present work, we describe a method that uses aluminum pieces deposited on SiO2 powder, in an argon atmosphere, at temperatures in the range 1300°–1600°C. The α-Al2O3 fibers are obtained via vapor-liquid-solid deposition. The novel addition of nickel and cobalt (or their oxides) allows the use of temperatures >1500°C, resulting in improved fiber production. We demonstrate that the metals do not contaminate the fibers produced in this way. Finally, we also estimate the tensile strength of the Al2O3 fibers produced through this method.  相似文献   

17.
Heterogeneous nucleation and growth was used to prepare composite particles with homogeneous component distribution. Composite particles consisting of α-Al2O3 cores with an outer amorphous homogeneous silica layer were prepared by heterogeneous nucleation and growth processing using an ethanol suspension containing ammonia, tetraethylorthosilicate, and α-Al2O3. Fine mullite powders of average particle size 0.53 μm were fabricated by calcinating the composite particles at 1500°C for 2 h.  相似文献   

18.
The influence of magnesium, phosphorus, and iron additions on the low-temperature (≤1000°C) sintering of nanocrystalline α-Al2O3 derived from α-AlOOH has been investigated. α-AlOOH powder with a surface area of 50 m2/g yielded α-Al2O3 products with surface areas of 150 and 80 m2/g after dehydration at temperatures of 400° and 500°C, respectively. However, these products were prone to sintering at >600°C, and the surface area was reduced to 15 m2/g within only 1 h at 1000°C. Although magnesium and iron doping had no discernible effect, the presence of phosphorus inhibited sintering and surface-area loss significantly. Samples doped with 1%–2% phosphorus had surface areas of >31 m2/g after 100 h at 1000°C. Atomic force microscopy studies of α-Al2O3 pseudomorphs derived from α-AlOOH single crystals also demonstrated the inhibiting effect of phosphorus, as the rate of crack elimination was reduced on phosphorus-modified surfaces. The effects of the dopants are discussed with regard to their potential influence on α-Al2O3 surface energy and diffusivity.  相似文献   

19.
α-Al2O3-seeded, boehmite-derived γ-Al2O3 was transformed in the presence of V2O5, resulting in a 205°C decrease in the α-Al2O3 transformation temperature and a 74% reduction in the apparent activation energy for the γ- to α-Al2O3 transformation at temperatures greater than 850°C. These changes are attributed to the lowered energy barrier for nucleation by seeding and the lowered activation energy for material transport through the liquid relative to the unseeded, solid-state transformation. Growth of the transforming alumina yielded fine-grained α-Al2O3 particles which exhibited a highly faceted morphology. It is proposed that the combined control of both nucleation and growth during liquid-phase-assisted transformation provides a potentially powerful technique for tailoring powder characteristics in many material systems which undergo nucleation and growth processes.  相似文献   

20.
Nanocrystalline aluminum nitride (AlN) with surface area more than 30 m2/g was synthesized by nitridation of nanosized δ-Al2O3 particles using NH3 as a reacting gas. The resulting powders were characterized by CHN elemental analysis, X-ray diffraction (XRD), Fourier transform infrared spectra, X-ray photoelectron spectra, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller surface area techniques. It was found that nanocrystalline δ-Al2O3 was converted into AlN completely (by XRD) at 1350°–1400°C within 5.0 h in a single-step synthesis process. The complete nitridation of nanosized alumina at relatively lower temperatures was attributed to the lack of coarsening of the initial δ-Al2O3 powder. The effect of precursor powder types on the conversion was also investigated, and it was found that α-Al2O3 was hard to convert to AlN under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号