首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper concerns a detailed comparison between two optimization methods that are used to perform the structural optimization of flexible components within a multibody system (MBS) simulation. The dynamic analysis of flexible MBS is based on a nonlinear finite element formulation. The first method is a weakly coupled method, which reformulates the dynamic response optimization problem in a two-level approach. First, a rigid or flexible MBS simulation is performed, and second, each component is optimized independently using a quasi-static approach in which a series of equivalent static load (ESL) cases obtained from the MBS simulation are applied to the respective components. The second method, the fully coupled method, performs the dynamic response optimization using the time response obtained directly from the flexible MBS simulation. Here, an original procedure is proposed to evaluate the ESL from a nonlinear finite element simulation, contrasting with the floating reference frame formulation exploited in the standard ESL method. Several numerical examples are provided to support our position. It is shown that the fully coupled method is more general and accommodates all types of constraints at the price of a more complex optimization process.  相似文献   

2.
This paper presents an efficient computational method of dynamic stress history calculation for a general three-dimensional flexible body by combining flexible multibody dynamic simulation and quasi-static finite element analysis (FEA). In the dynamic simulation of flexible multibody systems, flexible components can undergo nonsteady gross motion and small elastic deformation that is described with respect to the body reference frame by using the assumed mode method. D'Alembert inertia loads from the gross body motion and the elastic deformation are expressed as a combination of space-dependent and time-dependent terms that are obtained from the dynamic simulation. D'Alembert inertia loads that are associated with each unit value of the time-dependent terms are then distributed to all finite element nodes in order to compute a corresponding stress influence coefficient through quasi-static structural analyses. Total dynamic stresses due to D'Alembert inertia loads are obtained by multiplying actual magnitude of time-dependent terms with the associated stress influence coefficients. By the proposed method, it is shown that, for a general three-dimensional component, the required number of FEAs can be significantly reduced.  相似文献   

3.
This paper presents a criterion on inclusion of stress stiffening effects in dynamic simulation of flexible multibody systems. The proposed criterion examines numerically the eigenvalue variation of the total modal stiffness matrix that is a combination of the modal stress stiffness matrix and the conventional linear modal stiffness matrix prior to actual dynamic simulation. If the variation is sufficiently large for any flexible body in the multibody system, then stress stiffening effects must be included in dynamic simulation of flexible multibody systems for accurate prediction of dynamic behavior. Since the criterion uses the most general stress stiffness matrix contributed from applied and constraint reaction loads as well as from a system of 12 inertial loads, this criterion is applicable to any general flexible multibody dynamic system. Several numerical results are presented to show the effectiveness of the proposed criterion.  相似文献   

4.
对热载荷作用下中心刚体与大变形薄板多体系统的动力学建模问题进行研究.基于Kirchhoff假设,从格林应变和曲率与绝对位移的非线性关系式出发,推导了非线性广义弹性力阵,用绝对节点坐标法建立了大变形矩形薄板的有限元离散的动力学变分方程.为了考虑刚体姿态运动、弹性变形和温度变化的相互耦合作用,推导了热流密度与绝对节点坐标之间的关系式.引入系统的运动学约束方程,建立了中心刚体-矩形板多体系统的考虑刚-柔-热耦合的热传导方程和带拉格朗日乘子的第一类拉格朗日动力学方程.为了有效地提高计算效率,将改进的中心差分法和广义-α法相结合,求解热传导方程和动力学方程,差分后的方程通过牛顿迭代法耦合求解.对刚-柔耦合和刚-柔-热三者耦合两种模型的仿真结果进行比较表明,刚体运动对温度梯度和热变形的影响显著.此外,本文建模方法考虑了几何非线性项,因此也考虑了热膨胀引起的轴向变形对横向变形的影响.  相似文献   

5.
An optimization methodology that iteratively links the results of multibody dynamics and structural analysis software to an optimization method is presented to design flexible multibody systems under dynamic loading conditions. In particular, rigid multibody dynamic analysis is utilized to calculate dynamic loads of a multibody system and a structural optimization algorithm using equivalent static loads transformed from the dynamic loads are used to design the flexible components in the multibody dynamic system. The equivalent static loads, which are derived from equations of motion, are used as multiple loading conditions of linear structural optimization. A simple example is solved to verify the proposed methodology and the pelvis part of the biped humanoid, a complex multibody system which consists of many bodies and joints, is redesigned using the proposed methodology.  相似文献   

6.
A nonlinear two-node superelement is proposed for the modeling of flexible complex-shaped links for use in multibody simulations. Assuming that the elastic deformations with respect to a corotational reference frame remain small, substructuring methods may be used to obtain reduced mass and stiffness matrices from a linear finite element model. These matrices are used in the derivation of potential and kinetic energy expressions of the nonlinear two-node superelement. By evaluating Lagrange’s equations, expressions for the internal and external forces acting on the superelement can be obtained. The inertia forces of the superelement are derived in terms of absolute nodal velocities and accelerations, which greatly simplifies the dynamic formulation. Three examples are included. The first two examples are used to validate the method by comparing the results with those obtained from nonlinear beam element solutions. We consider a benchmark simulation of the spin-up motion of a flexible beam with uniform cross-section and a similar simulation in which the beam is simultaneously excited in the out-of-plane direction. Results from both examples show good agreement with simulation results obtained using nonlinear finite beam elements. In a third example, the method is applied to an unbalanced rotating shaft, illustrating the potential of the proposed methodology for a more complex geometry.  相似文献   

7.
The paper presents a general optimization methodology for flexible multibody systems which is demonstrated to find optimal layouts of fiber composite structures components. The goal of the optimization process is to minimize the structural deformation and, simultaneously, to fulfill a set of multidisciplinary constraints, by finding the optimal values for the fiber orientation of composite structures. In this work, a general formulation for the computation of the first order analytical sensitivities based on the use of automatic differentiation tools is applied. A critical overview on the use of the sensitivities obtained by automatic differentiation against analytical sensitivities derived and implemented by hand is made with the purpose of identifying shortcomings and proposing solutions. The equations of motion and sensitivities of the flexible multibody system are solved simultaneously being the accelerations and velocities of the system and the sensitivities of the accelerations and of the velocities integrated in time using a multi-step multi-order integration algorithm. Then, the optimal design of the flexible multibody system is formulated to minimize the deformation energy of the system subjected to a set of technological and functional constraints. The methodologies proposed are first discussed for a simple demonstrative example and applied after to the optimization of a complex flexible multibody system, represented by a satellite antenna that is unfolded from its launching configuration to its functional state.  相似文献   

8.
Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., due to mechanical loading, modulates bone remodeling, and modeling. Dynamic strains rather than static strains provide the primary stimulus of bone functional adaptation. The finite element method can be generally used for estimating bone strains, but it may be limited to the static analysis of bone strains since the dynamic analysis requires expensive computation. Direct in vivo strain measurement, in turn, is an invasive procedure, limited to certain superficial bone sites, and requires surgical implementation of strain gauges and thus involves risks (e.g., infection). Therefore, to overcome difficulties associated with the finite element method and the in vivo strain measurements, the flexible multibody simulation approach has been recently introduced as a feasible method to estimate dynamic bone strains during physical activity. The purpose of the present study is to further strengthen the idea of using the flexible multibody approach for the analysis of dynamic bone strains. Besides discussing the background theory, magnetic resonance imaging is integrated into the flexible multibody approach framework so that the actual bone geometry could be better accounted for and the accuracy of prediction improved.  相似文献   

9.
In this paper a modal integration method is proposed for analyzingthe dynamic behavior of multi-link planar flexible manipulators. Anon-linear finite element method is employed to derive theequations of motion in terms of a mixed set of generalizedcoordinates of the manipulator with rigid links and deformationparameters that characterize flexible deformations of the links.Using a perturbation method the vibrational motion of themanipulator is modeled as a first-order perturbation of thenon-linear nominal rigid link motion. For that purpose theflexible dynamic manipulator model is split into two parts. Arigidified model describes the nominal rigid link motion. Alinear system linearized about the nominal trajectory describesthe vibrational motion. In order to reduce the dimension of thelinearized system, a modal reduction technique is proposed. Thenmodal integration can be applied using only a small number of lowfrequency modes. The mode-acceleration concept is used to accountfor the pseudo static contribution of the high frequency modes.Applied to the motion of a manipulator mechanism the method isreferred to as adaptive modal integration since thetime-varying nature of the mode shape functions is taken intoaccount.A flexible two-link manipulator is analyzed to illustrate theperformance of the solution method. Comparisons between solutionsutilizing non-linear and perturbation analyzes with and withoutmodal integration show a good agreement. In a simulation with onlya few modes the accuracy is kept, whereas the computation time isdrastically reduced.  相似文献   

10.
A topology optimization methodology is proposed for the flexible multibody system undergoing both large overall motion and large deformation. The system of concern is modeled via the absolute nodal coordinate formulation. The equivalent static load method is employed to transform the topology optimization of the nonlinear dynamic response of the system into a static one, and evaluated to adapt to the absolute nodal coordinate formulation by splitting the elastic deformations of the flexible components from the overall motions of those components. During the static topology optimization, the material interface is implicitly described as the zero level set of a higher-dimensional scalar function. Then, the semi-implicit level set method with the additive operator splitting algorithm is employed to solve the corresponding Hamilton-Jacobi partial differential equation. In addition, the expert evaluation method of weights based on the grey theory is utilized to define the objective function, and a modified augmented Lagrange multiplier method is proposed to treat the inequality volume constraint so as to avoid the oscillation and drift of the volume. Finally, two numerical examples are provided to validate the proposed methodology.  相似文献   

11.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

12.
以某型挖掘机为研究对象,建立其工作装置刚柔耦合动力学模型,基于实测油缸位移数据驱动该模型,得到其主要性能参数和典型工况危险部位应力.根据强度理论、动力学仿真结果和工程经验,分析挖掘机动臂和斗杆的易开裂部位,得到典型焊缝高危点,并通过实测应力应变数据进行验证.以刚柔耦合动力学仿真所得的铰点载荷作为输入,利用nCode疲劳分析软件仿真预测挖掘机动臂和斗杆的疲劳寿命.结果表明,实测数据驱动的刚柔耦合动力学仿真可以准确获取挖掘机实际挖掘过程的动力学特性,基于该仿真模型提取铰点载荷并用于预测疲劳寿命的方法切实可行.  相似文献   

13.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

14.
This paper proposes a dynamic equilibrium method for finding the initial equilibrium configuration of a railway catenary. In the proposed method, the catenary composed of flexible wires is modeled using two-node cable elements with absolute nodal coordinates based on a flexible multibody system formulation. Dynamic conditions that characterize the initial equilibrium configuration of the catenary are given and addressed as control processes in the form-finding procedure. The key feature of the proposed method is that the catenary configuration is continually evolved by dynamic simulation until characterization conditions are attained and an equivalent configuration of the centenary at static equilibrium is thus computed. It is validated using two examples and applied to the form-finding analysis of a two dimensional simple railway catenary. The obtained results are analyzed and discussed. It is general and can be applied to catenaries with complex configurations.  相似文献   

15.
This paper is concerned with the efficient dynamic analysis of flexible multibody systems using a robust coordinate reduction technique. Unlike conventional static correction, the formulation is derived by dynamic correction that considers the inertia effect. In this formulation, the constraint and fixed-interface normal modes, which are representative modes in the typical coordinate reduction, are corrected by considering the truncated modal effect with the residual flexibility. Therefore, the proposed method can offer a more precise reduced system without increasing the dimension, which consequently leads to a more accurate and efficient flexible multibody simulation. We implement here the proposed method under augmented formulations of the floating reference frame approach, and test its performance with numerical examples.  相似文献   

16.
舰炮发射动力学模块化建模方法   总被引:3,自引:0,他引:3  
在舰炮元件动力学方程的基础上,使用数值积分方法,并推广振动理论传递矩阵法,形成了舰炮发射动力学模块化建模方法——舰炮发射动力学离散时间传递矩阵法.该方法可模拟得到舰炮多体系统动力响应,仿真结果证明了该方法的有效性.  相似文献   

17.
The evaluation of the dynamic response analysis of large structures by vector superposition requires in its traditional formulation the solution of a large and expensive eigenvalue problem. A new method of dynamic analysis using load dependent transformation vectors for systems subjected to fixed spatial distribution of dynamic loads was recently introduced by Wilson et al. as an economic alternative to the usual mode superposition method. New computational variants to generate a load dependent transformation basis for arbitrary transient loadings which are a function of space and time are presented. Numerical applications on a simple structural system are used to show the relative efficiency of the proposed solution procedure over classical solution methods using mode-displacement, mode-acceleration or the original (fixed) load dependent reduction method.  相似文献   

18.
为探究系留气球在近地面工作时缆绳系统以及整体动力学响应特性,提出了一种系留气球-缆绳复杂系统动力学建模方法.通过将系留缆绳离散为若干圆柱型刚体,并以轴套力进行连接,描述系留缆绳的柔性多体特性,对系留气球系统在稳态风环境、风廓线环境以及阵风环境下进行了系统动力学建模与仿真.开展了系留气球系统结构以及环境参数对系留气球运动姿态的影响量化分析.研究结果表明,600米高度的系留气球在相同外部载荷下,系留缆绳分段数为320段时,系统的运动响应特性较为理想.  相似文献   

19.
Design sensitivity analysis of flexible multibody systems is important in optimizing the performance of mechanical systems. The choice of coordinates to describe the motion of multibody systems has a great influence on the efficiency and accuracy of both the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation (ANCF) are frequently utilized to describe flexibility, however, only the former has been used in design sensitivity analysis. In this article, ANCF, which has been recently developed and focuses on modeling of beams and plates in large deformation problems, is extended into design sensitivity analysis of flexible multibody systems. The Motion equations of a constrained flexible multibody system are expressed as a set of index-3 differential algebraic equations (DAEs), in which the element elastic forces are defined using nonlinear strain-displacement relations. Both the direct differentiation method and adjoint variable method are performed to do sensitivity analysis and the related dynamic and sensitivity equations are integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity equations is proposed. With this approach, the system sensitivity equations are constructed by assembling the element sensitivity equations with the help of invariant matrices, which results in the advantage that the complex symbolic differentiation of the dynamic equations is avoided when the flexible multibody system model is changed. Besides that, the dynamic and sensitivity equations formed with the proposed method can be efficiently integrated using HHT-I3 method, which makes the efficiency of the direct differentiation method comparable to that of the adjoint variable method when the number of design variables is not extremely large. All these improvements greatly enhance the application value of the direct differentiation method in the engineering optimization of the ANCF-based flexible multibody systems.  相似文献   

20.
在实际工程领域中存在着大量接触碰撞等非连续动力学问题,现有的解决柔性多体系统连续动力学过程的建模理论与方法,已经无法解决或无法很好解决这些问题.本文基于变拓扑思想,提出了附加接触约束的柔性多体系统碰撞动力学建模理论;通过设计柔性圆柱杆接触碰撞实验,验证了所提出附加约束接触碰撞模型的有效性;针对柔性多体系统全局动力学仿真面临时间和空间的多尺度问题,提出多变量的离散方法,从而提高了柔性多体系统非连续动力学的仿真效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号