共查询到16条相似文献,搜索用时 93 毫秒
1.
研究了利用高分辨电感耦合等离子体质谱仪测定碳钢中的痕量杂质元素Cr,Pb方法,并利用国家标准物质验证了方法的准确度.测定值与参考值吻合,RSD<5%(n=7). 相似文献
2.
为了满足现代稀土钢研发的要求,研究并建立了利用高分辨电感耦合等离子体质谱法测定低合金钢、不锈钢中的痕量稀土元素Ce含量的方法。详细讨论了质谱干扰,特别是Mo的干扰及分辨率的选择。当Mo的质量分数为2%以下时,可选用低分辨率进行分析;当Mo的质量分数为2%~6%时,可选择中分辨率进行分析。Mo的质量分数高于6%的影响通过干扰系数来扣除。基体效应通过内标Sc补偿。本方法测定下限为0.00002%(钼的质量分数),标准加入的回收率为92%~110%。利用标准物质验证了方法的准确度,测定值与认定值吻合,RSD小于10%。 相似文献
3.
镍基高温合金广泛应用于航空发动机的热端部件,其主要原材料高纯镍的纯度对其性能有着重要影响,因此需要测定和控制高纯镍中痕量元素的含量。通过选择合适的同位素克服质谱干扰,选择标准加入法绘制校准曲线克服基体效应,对辅助气流量进行了优化,在高分辨率模式下测定钙和砷,在中分辨率模式下测定其余元素,建立了高分辨电感耦合等离子体质谱法测定高纯镍中镁、铝、磷、钙、锰、铁、铜、锌、镓、锗、砷、硒、银、镉、铟、锡、锑、碲、金、汞、铊、铅、铋、钍、铀共25种痕量元素的方法。在优化的实验条件下,校准曲线线性相关系数均在0.999以上,各元素的方法检出限在0.003~0.15 μg/L之间,定量限在0.010~0.50 μg/L之间。选择3个高纯镍样品(纯度为99.99%),按实验方法对其中25种痕量元素进行测定,同时对同一高纯镍样品进行不同梯度的加标回收试验,结果表明,测定结果的相对标准偏差(RSD,n=8)为3.5%~9.7%,回收率为90%~110%。采用实验方法测定纯镍标准物质,测定值与标准值基本一致。按照实验方法对高纯镍样品中25种杂质元素进行测定,同时采用辉光放电质谱法进行方法比对,结果表明,两种分析方法测定结果吻合度较高。 相似文献
4.
应用高分辨电感耦合等离子体质谱法(HR-ICP-MS)测定电池锌粉中Mg、Mn、Fe、Co、Ni、Cu、As、Mo、Cd、Sb、Pb、Bi 12种痕量元素。考察了试样消解时引入的氯离子、试样中基体锌和共存元素对被测元素的影响及其消除方法。结果表明,高浓度氯离子对Bi、Cd、Mn、Mg、Fe的信号产生抑制作用,但其浓度小于5%时影响较小,因此可以通过控制试液中氯离子浓度来减少氯离子的影响;基体锌和其他共存元素的质谱干扰可以根据被测元素选择不同的质谱分辨率来克服;基体锌的质量浓度达到100 mg/L时,所有被测元素均受基体效应影响,但可以通过选择合适的内标元素进行校正。Bi的检出限为0.003μg/L,Fe的检出限为0.25μg/L,其它10种痕量元素的检出限在0.012~0.074μg/L之间。方法用于电池锌粉12个微量元素的测定,测定结果与其他方法(ICP-AES、GF-AAS、HG-AAS)相符,加标回收率在94.0%~108.6%之间,相对标准偏差(RSD)小于4.2%。 相似文献
5.
探讨了电感耦合等离子体质谱仪(ICP—MS)测定高纯镓中痕量元素的新技术,实验采用气固反应原理分离镓主体,富集杂质元素;采用10ng/ml Rh和Se为双内标补偿校正镓基体的抑制效应,采用碰撞室(CCT)技术消除多元素分子离子的干扰;使分离富集技术与ICP—MS技术联用,可满足99.9999%超高纯镓的分析要求。方法的检出限0.001~0.01μg/L,加标回收在90.6%~111.1%之间,RSD为0.27%~7.00%。 相似文献
6.
采用盐酸-硝酸-氢氟酸-高氯酸溶解样品,建立了电感耦合等离子体质谱法(ICP-MS)测定低合金钢中镧、铈、镨、钕的含量。根据丰度高和无干扰的原则来选择139La(99.911)、
140Ce(88.48)、141Pr(100)、146Nd(17.62)为测量同位素;对仪器工作条件进行了优化,确定功率为1200W,载气流量为0.84L/min;讨论了测定条件对结果的影响,确定测定介质为2%硝酸;考察了基体质量浓度对待测元素信号强度的影响,确定基体质量浓度在0.5g/L以下;以铑、铟、铯和铊为内标元素对仪器信号漂移和基体效应进行校正试验,选择10ng/mL铯为内标。基体浓度小于0.5mg/mL。方法检出限为0.00072~0.0017ng/mL,方法测定下限为0.0024~0.0057ng/mL。采用实验方法对低合金钢实际样品进行测定,测定结果与电感耦合等离子体发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD,n=6)在1.2%~4.0%之间。 相似文献
140Ce(88.48)、141Pr(100)、146Nd(17.62)为测量同位素;对仪器工作条件进行了优化,确定功率为1200W,载气流量为0.84L/min;讨论了测定条件对结果的影响,确定测定介质为2%硝酸;考察了基体质量浓度对待测元素信号强度的影响,确定基体质量浓度在0.5g/L以下;以铑、铟、铯和铊为内标元素对仪器信号漂移和基体效应进行校正试验,选择10ng/mL铯为内标。基体浓度小于0.5mg/mL。方法检出限为0.00072~0.0017ng/mL,方法测定下限为0.0024~0.0057ng/mL。采用实验方法对低合金钢实际样品进行测定,测定结果与电感耦合等离子体发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD,n=6)在1.2%~4.0%之间。 相似文献
7.
介绍了采用电感耦合等离子体质谱法(ICP—MS)对钽粉中微量杂质磷进行测定的方法。通过使用耐氢氟酸的惰性进样系统、屏蔽炬(shned torch)和冷等离子体技术,以及对测试条件的探讨,成功地运用标准加入法测量了金属钽粉中微量磷的含量。 相似文献
8.
建立了电感耦合等离子体质谱法(ICP-MS)同时测定生铁中的硼、锌、钴、钼、铅、砷、锡、锑、铋的方法。讨论了样品溶解方法、质谱干扰与同位素选择、基体效应及内标的校正作用。确定了用硝硫混酸溶解样品,11B、66Zn、59Co、98Mo、208Pb、75As、118Sn、121Sb、209Bi作为待测元素的测量同位素。通过以高纯铁粉进行基体匹配和采用Sc作为质量数小于100的元素的内标,In作为质量数在100~130的元素的内标,Tl作为质量数大于130的元素的内标来消除基体效应和仪器信号漂移的影响。方法应用于生铁标准样品中各元素的测定,测定值与认定值吻合,除了Bi因含量较低其相对标准偏差(RSD,n=8)为16.5%外,其余元素的RSD(n=8)都小于10.0%。 方法应用于实际样品分析,测得结果与电感耦合等离子体原子发射光谱法吻合。 相似文献
9.
为了满足钢铁产品日益严格的质量需求,将钢铁产品中痕量元素的测定下限降低至μg/g级也日显重要。本研究工作利用高分辨率的等离子质谱仪快速、准确测定了钢中μg/g级的B,Al,P,Cr,Pb,Sn,Sb,As,Bi等多种元素。钢铁样品用硝酸、盐酸、氢氟酸在电热板上加热或微波消解,溶液经稀释后未经基体分离,未加内标直接用电感耦合等离子体质谱法(ICP-MS)测定。该方法检测下限:P为0.145μg/g,其余元素低于0.1μg/g。精密度好,相对标准偏差(n=10):Bi为10·5%,其余元素小于5%。回收率:A 相似文献
10.
电解金属锰样品用HNO3+HCl经微波消解后,直接用电感耦合等离子体质谱法(ICP-MS)同时测定了试液中Na、Mg、Ti、V、Co、Ni、Cu、Zn、As、Mo、Cd、Sb、Pb等13种痕量元素。通过优化仪器工作参数、选择适宜待测元素的同位素以及选用干扰元素校正方程克服了质谱干扰,使用内标元素消除了基体干扰。结果表明,Mg、V、Co、Ni、Cu、Zn、As、Mo、Cd、Sb、Pb等11种痕量元素的检出限在0.001~0.086 μg/L之间,Na和Ti元素的检出限在0.16~0.19 μg/L之间。将本方法用于测定电解锰样品,加标回收率在95%~106%之间,相对标准偏差(RSD)小于3.5%。方法与其它分析方法对照,结果一致。 相似文献
11.
由于磷存在较严重的多原子离子干扰,使电感耦合等离子体质谱法(ICP-MS)分析钢铁及其合金中痕量磷时受到较大限制。本文采用八极杆碰撞/反应池(ORS)技术,在池内引入惰性气体氦气,通过能量歧视效应来选择分离多原子干扰离子与待测离子,较好地消除了干扰。对相关分析条件进行了全面优化,采用基体匹配并以铑为内标消除基体效应的影响,可实现对钢铁及合金中含量为μg/g级痕量磷的测定。对于浓度范围为0~100ng/mL的磷,工作曲线的相关系数为0.9996,方法检出限为0.31μg/g(3δ,n=11)。该方法应用于钢 相似文献
12.
在0.57~1.43 mol/L硝酸介质中, 用甲基异丁基酮(MIBK)萃取钼酸铵与磷生成的磷钼杂多酸, 使磷与基体铁分离后, 选择波长213.618 nm的谱线作为分析线, 采用电感耦合等离子体原子发射光谱法(ICP-AES)测定了高纯铁中磷的含量。校准曲线的线性回归方程为I= 15.04ρ+0.012 1, 相关系数为0.999 6, 方法的检出限为0.020 mg/L。通过萃取分离和选择合适的谱线作为磷的分析线, 基体和共存元素对测定没有干扰。方法用于多个高纯铁标准物质中磷的测定, 测定值与认定值一致, 测定结果的相对标准偏差(n=10)在0.54%~2.9%之间。方法适用于高纯铁中0.000 10%~0.010%磷的测定。 相似文献
13.
样品经硝酸和氢氟酸分解后,以高纯钴为基体配制校准系列溶液,在电感耦合等离子体原子发射光谱仪上测定了样品溶液中磷含量。通过试验确定了酸度、样品提升量、雾化气流速、功率、观测高度、分析谱线等分析条件。铌和锆的干扰试验结果表明,样品中的铌和锆不影响磷含量的测定。考察了快速自动谱线拟合技术(FACT),结果表明,使用该技术能够消除Co 178205 nm谱线对P 178222 nm的干扰。在用P 178222 nm和P 213618 nm作分析线测定磷时,方法的检出限分别为0000 6% 和 0000 5%(相对于02 g样品,定容至50 mL),加标回收率在93%~112%之间,相对标准偏差小于10%(n=7)。本方法测定样品中磷含量的结果同光度法测定结果相符。 相似文献
14.
采用盐硝混合酸(1+1+1)溶解样品,通过选择27Al作为测定用同位素和设置中分辨率(R=4 000)消除质谱干扰,以标准加入法绘制校准曲线消除基体效应,避免了对样品基体进行分离的繁琐前处理过程,实现了电感耦合等离子体质谱法(ICP-MS)对铁基非晶合金中痕量铝的测定。实验表明,称取0.100 0 g样品于石英三角瓶中,准确加入10.0 mL盐硝混合酸(1+1+1),电热板上低温加热可将样品完全溶解;采用标准加入法建立校准曲线,相关系数为0.999 0,线性范围为0.000 1%~0.005 0%,方法的检出限为0.035 μg/g。按照实验方法,对2个铁基非晶合金样品中痕量铝进行测定,测得结果的相对标准偏差(RSD,n=9)为6.1%~7.1%,回收率为96%~106%。将实验方法与电感耦合等离子体原子发射光谱法(ICP-AES)进行方法比对,两种方法对铁基非金合金实际样品中铝的测定结果基本一致。 相似文献
15.
16.
为了满足钢的研发以及生产要求,建立了利用电感耦合等离子体原子发射光谱(ICP-AES)法测定高合金钢中钒的方法。考察了钒常用的谱线与高合金钢中常见合金元素谱线的重叠干扰情况,选择了V292.402 nm和V309.311 nm谱线作分析线,并通过基体匹配、空白扣除、干扰系数校正和不扣除背景等方式进行干扰校正。用本法对含钒质量分数为0.005 %~4 %的高合金钢标准物质进行测定,测定值与认定值吻合,测定结果的相对标准偏差小于5 %(n=7)。 相似文献