首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the rate of growth of Na2B4O7 from its melt was determined between 1° and 192°C of undercooling. The maximum rate of growth was 2000 μm/min at 57°C of undercooling. Analysis of the growth data indicated that growth could occur by a screw dislocation mechanism over the entire range of undercooling. When this mechanism was assumed, there was good correlation between the experimental data and the predictions of the Turnbull and Cohen equation.  相似文献   

2.
NdBa2Cu3O7-delta (Nd-123) superconductor has been processed to obtain a highly textured microstructure with micrometer-sized spherical Nd4Ba2Cu2O10 (Nd-422) inclusions through a process that involves the infiltration of liquid phases into a shaped preform followed by its slow cooling through the peritectic formation temperature of Nd-123. The process was carried out in high-purity argon (maximum of 4 ppm of oxygen) to reduce the formation of low- T c solid solutions. A major advantage of the process is that it minimizes the possibility of Nd-422 coarsening in the liquid. The result is a very uniform distribution of nearly spherical Nd-422 inclusions with 80% of the particles having a diameter less than 1 µm, in the highly textured Nd-123 matrix. Since the present process eliminates shrinkage and large hollows within the interior of the samples, it can enable the fabrication of 3-dimensional complex-shaped objects with good dimensional tolerance and high J c for applications. The critical current densities in the Nd-123/Nd-422 composites have been measured and the values obtained are discussed in the context of the microstructure of the material.  相似文献   

3.
The kinetics of the precipitation of NiFe2O4 from an Fedoped NiO matrix has been studied. Polycrystalline samples were cooled at a constant rate through the solvus temperature, and the various stages of precipitation were monitored by periodically interrupting the cooling to observe the evolving size, distribution, and morphology of the precipitates. The precipitation occurred primarily by homogeneous nucleation and growth. The coherent precipitates have a dendritic morphology with a large interparticle spacing characteristic of fast precipitate growth. Reasonable rates for the nucleation of NiFe2O4 were observed to occur between 850° and 800°C, resulting in a 350° to 400°C undercooling. Preferential nucleation occurred at grain boundaries, but these particles were only twice as long as those nucleated homogeneously. The size and shape of the precipitates are independent of the distance from the surface, indicating that precipitation occurs by a local arrangement of the Ni and Fe cations and the preexisting cation vacancies.  相似文献   

4.
Cubic solid solutions in the Y2O3-Bi2O3 system with ∼25% Y2O3 undergo a transformation to a rhombohedral phase when annealed at temperatures ≤ 700°C. This transformation is composition-invariant and is thermally activated, and the product phase can propagate across matrix grain boundaries, indicating that there is no special crystallo-graphic orientation relationship between the product and the parent phases. Based on these observations, it is proposed that cubic → rhombohedral phase transformation in the Y2O3-Bi2O3 system is a massive transformation. Samples of composition 25% Y2O3-75% Bi2O3 with and without aliovalent dopants were annealed at temperatures ≤ 700°C for up to 10000 h. ZrO2 as a dopant suppressed while CaO and SrO as dopants enhanced the kinetics of phase transformation. The rate of cubic/rhombohedra1 interface migration (growth rate or interface velocity) was also similarly affected by the additions of dopants; ZrO2 suppressed while CaO enhanced the growth rate. Diffusion studies further showed that ZrO2 suppressed while CaO enhanced cation interdiffusion coefficient. These observations are rationalized on the premise that cation interstitials are more mobile compared to cation vacancies in cubic bismuth oxide. The maximum growth rate measured was ∼10−10 m/s, which is orders of magnitude smaller than typical growth rates measured in metallic alloys. This difference is explained in terms of substantially lower diffusion coefficients in these oxide systems compared to metallic alloys.  相似文献   

5.
The crystallization kinetics of a glass based on one type of mica, NaMg3AlSi3O10F2, with the addition of a nucleating agent, TiO2, has been studied using differential thermal analysis (DTA) under both isothermal and nonisothermal conditions. Two distinct crystallization exotherms in the DTA curve are observed and resolved that correspond to the initial formation of magnesium titanate (MgTi2O5) and the later formation of mica. The activation energy for precipitation of each crystalline phase has been evaluated, and the crystallization mechanism has been studied. The results indicate that the growth of mica is a two-dimensional process, controlled by the crystal-glass interface reaction. The average calculated values of activation energies are 256 ± 11 kJ/mol and 275 ± 6 kJ/mol for the precipitation of MgTi2O5 and mica from the glass matrix, respectively.  相似文献   

6.
The sinterability of Al2O3/ZrO2 composite powder compacts containing 2 and 10 vol% ZrO2 was compared to the sinterability of their single-phase constituents through constant-heating-rate experiments. The ZrO2 inclusion phase delayed the initiation of bulk shrinkage and the temperature of maximum strain rate by 100°C. The ZrO2 inclusion phase also significantly inhibited grain growth. These results, discussed with regard to the thermodynamics of pore disappearance, suggest that phenomena inhibiting grain growth may also inhibit densification.  相似文献   

7.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

8.
Oxysulfide glasses were prepared in a wide range of compositions in the system LiBO2-LiBS2. Temperatures of glass transition ( Tg ), crystallization ( Tc ), and liquidus ( Tl ) were determined; a maximum of Tg was observed near the composition with 20 mol% LiBS2. The electrical conductivity at 500 K ranges from 5×10−4 to 5×10−3 S·cm−1 with the maxima in conductivity observed near the composition 55LiBO2·45LiBS2. This conductivity enhancement with a mixing of two components, which can be called the mixed-anion effect, is accompanied by a decrease in the degree of undercooling of glass expressed by the ratio ( Tl - Tg )/ Tl . The infrared and Raman spectra showed that the structural units with bridging oxygens B-O-B and nonbridging sulfurs B-S predominated rather than those with nonbridging oxygens B-O and bridging sulfurs B-S-B in these glasses.  相似文献   

9.
Laminar composites, containing layers of Ce-ZrO2 and either Al2O3 or a mixture of Al2O3 and Ce-ZrO2, have been fabricated using a colloidal method that allowed formation of layers with thicknesses as small as 10 μm. Strong interactions between these layers and the martensitic transformation zones surrounding cracks and indentations have been observed. In both cases, the transformation zones spread along the region adjacent to the layer, resulting in an increased fracture toughness. The enhanced fracture toughness was observed for cracks growing parallel to the layers as well as for those that were oriented normal to the layers.  相似文献   

10.
Retrograde densification of pelletized calcines and glasses having an approximate (Bi,Pb)2Sr2Ca2Cu3O10 starting stoichiometry and sintered at ∼850°C can be described by first-order rate equations. Retrograde densification in the calcine precursors was largely due to the development of open pores, and was approximately proportional to the concentration of the (Bi,Pb)2Sr2CaCu3O10 phase. In the glasses, retrograde densification is mainly caused by porosity accompanying the growth of a needlelike Sr─Ca─Cu─O phase, together with (Bi,Pb)2Sr2Ca2Cu3O10 and (Bi,Pb)2Sr2CaCu2O8.  相似文献   

11.
The microstructure and nonlinear current-voltage characteristics of Mn3O4-doped ZnO-V2O5 ceramics, microwave-sintered at 800°-1200°C for 10 min, have been investigated. A high density (96% of the theoretical density) has been achieved. The incorporation of Mn3O4 additives does not significantly alter the densification behavior of the ZnO-V2O5 materials, but rather pronouncedly increases the nonlinear coefficient (α= 23.5) and markedly suppresses their leakage current density ( J L= 2.4 10-6 A/cm2). On the other hand, the intrinsic properties of the materials, including the Schottky barrier height (Phib) and the donor density ( N d), are only moderately modified; that is, Phib= 1.16 eV and N d= 5.4 1017/cm3. X-ray diffractometry analyses and energy-dispersive X-ray microanalyses (via scanning electron microscopy) indicate that the V2O5 species facilitate the densification and the development of microstructure via the formation of a liquid phase (Zn3(VO4)2) along the grain boundaries, whereas the Mn3O4 species markedly enhance the nonohmic behavior of the ZnO-V2O5 materials by forming the surface states along the grain boundaries.  相似文献   

12.
Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO2–3 mol% Y2O3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO2–3 mol% Y2O3 produced mixed results. In the case of submicrometer ZrO2–3 mol% Y2O3, neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO2–3 mol% Y2O3, fast heating rates severely retarded densiflcation and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO2–3 mol% Y2O3 specimens.  相似文献   

13.
High-purity polycrystalline MgO and Al2O3 were thermally grooved at 1500° and 1600°C. Accurate techniques were developed for following the growth of a single groove. For high-purity samples growth kinetics were essentially similar to those reported in the literature but were determined to be controlled by volume diffusion. Specimens for thermal grooving were prepared from Al2O3 to which transition metal oxides (Fe2O39, MnO, and TiO2), which are known to accelerate shrinkage and sintering of Al2O3 powder compacts, had been added; the rate of groove growth was increased remarkably by minor amounts of these additives. Control of partial pressure indicated that Fe2+ and Ti4+ are the species active in promoting groove growth. Substantial evidence was found for volume diffusion as the mechanism controlling groove formation.  相似文献   

14.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

15.
Grain growth of ZnO during liquid-phase sintering of a ZnO-6 wt% Bi2O3 ceramic was investigated for A12O3 additions from 0.10 to 0.80 wt%. Sintering in air for 0.5 to 4 h at 900° to 1400°C was studied. The AI2O3 reacted with the ZnO to form ZnAl2O4 spinel, which reduced the rate of ZnO grain growth. The ZnO grain-growth exponent was determined to be 4 and the activation energy for ZnO grain growth was estimated to be 400 kJ/mol. These values were compared with the activation parameters for ZnO grain growth in other ceramic systems. It was confirmed that the reduced ZnO grain growth was a result of ZnAl2O4 spinel particles pinning the ZnO grain boundaries and reducing their mobility, which explained the grain-growth exponent of 4. It was concluded that the 400 kJ/mol activation energy was related to the transport of the ZnAl2O4 spinel particles, most probably controlled by the diffusion of O2- in the ZnAl2O4 spinel structure.  相似文献   

16.
The extents of the liquidus and solidus fields were determined for tungsten bronze-type solid solutions in the Na2O-BaO-Nb2O5 system by DTA and melt crystal growth experiments. Bronze-type solid solutions exist to 7.1Na2O-34.9BaO-58Nb2O5 in the Nb2O5-rich region and from 12Na2O-38BaO-50Nb2O5 to 4.6Na2O-45.4BaO-50Nb2O5 along the NaNbO2-BaNb2O6 join, which includes NaBa2Nb5O15=10Na2O-40BaO-50Nb2O6. There is little, if any, solid solubility of compositions with a deficiency of Nb2O5. Curie temperatures decline rapidly and dielectric constant peaks broaden with Nb2O5 substitution because the Nb:O ratio becomes greater than the octahedral 1:3 ratio. Useful ferroelectrics exist along the NaNbO3-BaNb2O6 join where the Nb:O ratio is 1:3. Large striae-free crystals, with less optical scattering than Czochralski-grown crystals, were grown from unseeded Na2O-rich melts (e.g. 15Na2O-37.5BaO-47.5Nb2O5) cooled from 1520° to 1300°C at 2°C/h. Annealing effects on these crystals whose compositions lie on the NaNbO3-BaNb2O6 join are discussed.  相似文献   

17.
Nucleation and crystal growth rates and properties were studied in a two-stage heat treatment process for Fe2O3-CaO-SiO2 glasses. Glass transition (Tg) and crystallization temperatures (T c ) for the glasses lay between about 612.0° and 710.0°C, and 858.5° and 905.0°C, respectively, and magnetite was the main crystal phase. For a glass of 40Fe2O3. 20CaO·40SiO2 (in wt%) the maximum nucleation rate was (68.6 ± 7) × 106/mm3·s at 700°C, and the maximum crystal growth rate was 9.0 nm/min1/2 at 1000°C. The mean crystal size of the magnetite increased from 30 to 140 nm with variation of nucleation and crystal growth conditions. The glass showed the maxima in saturation magnetization and coercive force, 212.1 × Wb/m2 and 30.8 × 103 A/m, when heat-treated for 4 h at 1000°C and 1050°C, respectively. The variation of the saturation magnetization could be quantitatively interpreted well in terms of the volume fraction of the magnetite, whereas that of the coercive forces could be explained only qualitatively in terms of the particle size of the magnetite. Hysteresis losses showed the maximum value of 1493 W/m3 when heat-treated at 1000°C for 4 h prenucleated at 700°C for 60 min, and increased linearly with increasing heat treatment time under a magnetic field up to 800 × 103 A/m.  相似文献   

18.
We report herein on Ruddlesden–Popper-type doped Sr n +1Ti n O3 n +1 ( n =2) as a potential candidate for n -type thermoelectric (TE) oxides. The TE properties of 5 at.% La-, Nd-, and Nb-doped Sr3Ti2O7 polycrystalline ceramics were investigated and the origin of Seebeck coefficient was discussed from the viewpoint of the symmetry of TiO6 octahedra. A significant reduction in the lattice thermal conductivity was observed by the enhancement of phonon scattering at SrO/(SrTiO3) n interfaces originating from the inherent superlattice structure, and the maximum dimensionless figure of merit, ZT ∼0.15, at a 1000 K value was obtained in 5 at.% La-doped Sr3Ti2O7.  相似文献   

19.
Oriented samples of Al2O3-ZrO2 (Y2O3) eutectics consisting of an alumina matrix with zirconia dispersoids were grown by directional solidification. Preferred growth directions and epitaxial relations were determined from X-ray and electron diffraction analyses. Imaging of interfaces was performed by high-resolution transmission electron microscopy on oriented platelets. Semicoherent interfaces were observed with faceting along crystallographic planes of both phases.  相似文献   

20.
Alumina and Al2O3/ZrO2 (1 to 10 vol%) composite powders were mixed and consolidated by a colloidal method, sintered to >98% theoretical density at 1550°C, and subsequently heat-treated at temperatures up to 1700°C for grain-size measurements. Within the temperature range studied, the ZrO2 inclusions exhibited sufficient self-diffusion to move with the Al2O3 4-grain junctions during grain growth. Growth of the ZrO2, inclusions occurred by coalescence. The inclusions exerted a dragging force at the 4-grain junctions to limit grain growth. Abnormal grain growth occurred when the inclusion distribution was not sufficiently uniform to hinder the growth of all Al2O3 grains. This condition was observed for compositions containing ≤2.5 vol% ZrO2, where the inclusions did not fill all 4-grain junctions. Exaggerated grains consumed both neighboring grains and ZrO2, inclusions. Grain-growth control (no abnormal grain growth) was achieved when a majority (or all) 4-grain junctions contained a ZrO2 inclusion, viz., for compositions containing ≥5 vol% ZrO2. For this condition, the grain size was inversely proportional to the volume fraction of the inclusions. Since the ZrO2 inclusions mimic voids in all ways except that they do not disappear, it is hypothesized that abnormal grain growth in single-phase materials is a result of a nonuniform distribution of voids during the last stage of sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号