首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small (116 amino acids) inner membrane protein MerT encoded by the transposon Tn501 has been overexpressed under the control of the bacteriophage T7 expression system. Random mutants of MerT were made and screened for loss of mercuric ion hypersensitivity. Several mutant merT genes were selected and sequenced: Cys24Arg and Cys25Tyr mutations abolish mercury resistance, as do charge-substitution mutations in the first predicted transmembrane helix (Gly14Arg, Gly15Arg, Gly27Arg, Ala18Asp), and the termination mutations Trp66Ter and Cys82Ter.  相似文献   

2.
Cys-scanning mutagenesis has been applied to the remaining 45 residues in lactose permease that have not been mutagenized previously (from Gln100 to Arg144 which comprise helix IV and adjoining loops). Of the 45 single-Cys mutants, 26 accumulate lactose to > 75% of the steady state observed with Cys-less permease, and 14 mutants exhibit lower but significant levels of accumulation (35-65% of Cys-less permease). Permease with Phe140-->Cys or Lys131-->Cys exhibits low activity (15-20% of Cys-less permease), while mutants Gly115-->Cys, Glu126-->Cys and Arg144-->Cys are completely unable to accumulate the dissacharide. However, Cys-less permease with Ala or Pro in place of Gly115 is highly active, and replacement of Lys131 or Phe140 with Cys in wild-type permease has a less deleterious effect on activity. In contrast, mutant Glu126-->Cys or Arg144-->Cys is inactive with respect to both uphill and downhill transport in either Cys-less or wild-type permease. Furthermore, mutants Glu126-->Ala or Gln and Arg144-->Ala or Gln are also inactive in both backgrounds, and activity is not rescued by double neutral replacements or inversion of the charged residues at these positions. Finally, a mutant with Lys in place of Arg144 accumulates lactose to about 25% of the steady state of wild-type, but at a slow rate. Replacement of Glu126 with Asp, in contrast, has relatively little effect on activity. None of the effects can be attributed to decreased expression of the mutants, as judged by immunoblot analysis. Although the activity of most of the single-Cys mutants is unaffected by N-ethylmaleimide, Cys replacement at three positions (Ala127, Val132, or Phe138) renders the permease highly sensitive to alkylation. The results indicate that the cytoplasmic loop between helices IV and V, where insertional mutagenesis has little effect on activity [McKenna, E., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11954-11958], contains residues that play an important role in permease activity and that a carboxyl group at position 126 and a positive charge at position 144 are absolutely required.  相似文献   

3.
The uncoupling protein (UCP) from brown adipose tissue mitochondria is a carrier that catalyzes proton re-entry into the matrix and thus dissipates the proton electrochemical potential gradient as heat. UCP activity is regulated: purine nucleotides inhibit while fatty acids activate transport. We have previously reported that sequence 261-269 of the UCP has a closely related counterpart in the adenine nucleotide translocator, as well as in the DNA binding domain of the estrogen receptor. Site-directed mutagenesis of the UCP showed that deletion of amino acids 267-269 in the UCP abolished nucleotide inhibition [Bouillaud, F., et al. (1994) EMBO J. 13, 1990-1997]. Complete deletion of the homologous domain (UCPDelta9) produced a highly deleterious mutant that collapsed the mitochondrial membrane potential and halted yeast growth. Since under our growth conditions revertants appeared rapidly, it was not possible to characterize this mutant. In this article, we have designed conditions to isolate mitochondria containing significant amounts of the UCPDelta9 mutant protein. These mitochondria show no respiratory control and are insensitive to nucleotides. Investigation of the permeability properties revealed that UCPDelta9 mitochondria swell rapidly in potassium salts in the absence of valinomycin, thus indicating a loss of specificity. The size exclusion properties of this mutant were determined with polyethylene glycols of various molecular masses (400-20000 Da), and it was found that UCPDelta9 can catalyze permeation of molecules of up to 1000 Da. We conclude that the deletion of amino acids 261-269 converts the UCP into an unspecific pore.  相似文献   

4.
Chemical modification studies and site-directed mutagenesis experiments have provided evidence that human lysosomal acid lipase/cholesteryl ester hydrolase (HLAL), human gastric lipase (HGL), and rat lingual lipase (RLL) are serine esterases. Loss of HLAL and HGL activity was also observed in the presence of sulfhydryl-reactive substances, suggesting that cysteines are likewise essential for substrate hydrolysis. To study the functional role of the HLAL and HGL cysteine residues, we replaced these amino acids with alanine by site-directed mutagenesis. Substitutions at positions 227 and 236, alone or together, drastically reduced hydrolytic activity in a substrate-dependent manner while the other mutants were not affected to any great extent. HLAL(Cys227-->Ala), HLAL(Cys236-->Ala), and HLAL(Cys227-->Ala, Cys236-->Ala) were essentially inactive against cholesteryl oleate, but retained about 23-39%, 28-37%, and 13-17% of catalytic activity for both triolein and tributyrin, respectively. The data obtained with the corresponding HGL mutants confirmed the importance of residues 227 and 236 in maintaining enzymatic activity towards long- and short-chain triglycerides. In order to assess the contribution of the eight amino acids delimited by Cys227 and Cys236 to lipolysis, we generated HLAL replacement mutants containing the corresponding residues 228-235 of HGL or RLL. Both HLAL chimeras were catalytically active towards all three substrates analyzed, indicating that these amino acids do not determine HLAL substrate specificity. Deletion of the eight-amino acid alpha-helix as well as disruption of its hydrophobic surface, in contrast, abolished enzymatic activity. Our studies suggest that Cys227, Cys236, and the amphipathic helix formed by residues 228-235 are essential for HLAL- and HGL-mediated neutral lipid catabolism.  相似文献   

5.
Mutations in Ras protein at positions Gly12 and Gly13 (phosphate-binding loop L1) and at positions Ala59, Gly60, and Gln61 (loop L4) are commonly associated with oncogenic activation. The structural and catalytic roles of these residues were probed with a series of unnatural amino acids that have unusual main chain conformations, hydrogen bonding abilities, and steric features. The properties of wild-type and transforming Ras proteins previously thought to be uniquely associated with the structure of a single amino acid at these positions were retained by mutants that contained a variety of unnatural amino acids. This expanded set of functional mutants provides new insight into the role of loop L4 residues in switch function and suggests that loop L1 may participate in the activation of Ras protein by effector molecules.  相似文献   

6.
To stabilize Aspergillus awamori glucoamylase (GA), three proline substitution mutations were constructed. When expressed in Saccharomyces cerevisiae, Ser30-->Pro (S30P) stabilized the enzyme without decreased activity, whereas Asp345-->Pro (D345P) did not significantly alter and Glu408-->Pro (E408P) greatly decreased enzyme thermostability. The S30P mutation was combined with two previously identified stabilizing mutations: Gly137-->Ala, and Asn20-->Cys/Ala27-->Cys (which creates a disulfide bond between positions 20 and 27). The combined mutants demonstrated cumulative stabilization as shown by decreased irreversible thermoinactivation rates between 65 and 80 degrees C. Additionally, two of the combined mutants outperformed wild-type GA in high-temperature (65 degrees C) saccharifications of DE 10 maltodextrin and were more active than the wild-type enzyme when assayed using maltose as substrate.  相似文献   

7.
Fatty acid ethyl ester synthase-III metabolizes both ethanol and carcinogens. Structure-function studies of the enzyme have not been performed in relation to site specific mutagenesis. In this study, three residues (Gly 32, Cys 39 and His 72) have been mutated to observe their role in enzyme activity. Gly to Gln, Cys to Trp and His to Ser mutations did not affect fatty acid ethyl ester synthase activity, but His to Ser mutant had less than 9% of control glutathione S-transferase activity. The apparent loss of transferase activity reflected a 28 fold weaker binding constant for glutathione. Thus, this study indicates that Gly and Cys may not be important for synthase or transferase activities however, histidine may play a role in glutathione binding, but it is not an essential catalytic residue of glutathione S-transferase or for fatty acid ethyl ester synthase activity.  相似文献   

8.
9.
The transmembrane (TM) domains of viral fusion proteins are required for fusion, but their precise role is unknown. G protein, the fusion protein of vesicular stomatitis virus, was previously shown to lose syncytia-forming ability if six residues (GLIIGL) were deleted from its TM domain. The 20-residue TM domain of wild-type (TM20) G protein was thus changed into a TM domain of 14 residues (TM14). To assess possible sequence specificity for this loss of function, the two Gly residues in TM20 were replaced with either Ala or Leu. Both mutations resulted in complete loss of fusion activity, as measured by fusion-dependent reporter gene transfer. Single substitutions decreased activity by about half. TM14 was weakly active (15%) but reintroduction of a Gly residue into TM14 by a single Ile --> Gly substitution increased activity to 80%. All mutants retained normal hemifusion activity, i.e., lipid mixing between the outer leaflets of the reacting membranes. Thus, at least one TM Gly residue is required for a late step in fusion mediated by G protein. Gly residues were significantly (2.6-fold; P = 0.004) more abundant in the TM domains of viral fusion proteins than in those of nonfusion proteins and were distributed differently within the TM domain. Thus, Gly residues in the TM domain of other viral fusion proteins may also prove to be important for fusion activity.  相似文献   

10.
Mitochondria uncoupling by fatty acids in vivo is still questionable, being confounded by their dual role as substrates for oxidation and as putative genuine uncouplers of oxidative phosphorylation. To dissociate between substrate and the uncoupling activity of fatty acids in oxidative phosphorylation, the uncoupling effect was studied here using a nonmetabolizable long chain fatty acyl analogue. beta,beta'-Methyl-substituted hexadecane alpha,omega-dioic acid (MEDICA 16) is reported here to induce in freshly isolated liver cells a saturable oligomycin-insensitive decrease in mitochondrial proton motive force with a concomitant increase in cellular respiration. Similarly, MEDICA 16 induced a saturable decrease in membrane potential, proton gradient, and proton motive force in isolated liver and heart mitochondria accompanied by an increase in mitochondrial respiration. Uncoupling by MEDICA 16 in isolated mitochondria was partially suppressed by added atractyloside. Hence, fatty acids may act as genuine uncouplers of cellular oxidative phosphorylation by interacting with specific mitochondrial proteins, including the adenine nucleotide translocase.  相似文献   

11.
We have isolated a high copy suppressor of a temperature-sensitive mutation in ATM1, which codes for an ABC transporter of Saccharomyces cerevisiae mitochondria. The suppressor, termed BAT1, encodes a protein of 393 amino acid residues with an NH2-terminal extension that directs Bat1p to the mitochondrial matrix. A highly homologous protein, Bat2p, of 376 amino acid residues was found in the cytosol. Both Bat proteins show striking similarity to the mammalian protein Eca39, which is one of the few known targets of the myc oncogene. Deletion of a single BAT gene did not impair growth of yeast cells. In contrast, deletion of both genes resulted in an auxotrophy for branched-chain amino acids (Ile, Leu, and Val) and in a severe growth reduction on glucose-containing media, even after supply of these amino acids. Mitochondria and cytosol isolated from bat1 and bat2 deletion mutants, respectively, contained largely reduced activities for the conversion of branched-chain 2-ketoacids to their corresponding amino acids. Thus, the Bat proteins represent the first known isoforms of yeast branched-chain amino acid transaminases. The severe growth defect of the double deletion mutant observed even in the presence of branched-chain amino acids suggests that the Bat proteins, in addition to the supply of these amino acids, perform another important function in the cell.  相似文献   

12.
Seven arginine residues are conserved in all the tetracycline/H+ antiporters of Gram-negative bacteria. Four (Arg67, -70, -71, and -127) of them are located in the putative cytoplasmic loop regions and three (Arg31, -101, and -238) in the putative periplasmic loop regions [Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670]. These arginine residues were replaced by alanine, lysine, or cysteine one by one through site-directed mutagenesis. None of the mutants showed significant alteration of the protein expression level. The mutants resulting in the replacement of Arg31, Arg67, Arg71, and Arg238 with either Ala, Cys, or Lys retained tetracycline resistance levels comparable to that of the wild type. Among them, only the Arg238 --> Ala mutant showed very low transport activity in everted membrane vesicles, probably due to the instability of the mutant protein. The replacement of Arg70 and Arg127 with Ala or Cys resulted in a drastic decrease in the drug resistance and almost complete loss of the transport activity, while the Lys replacement mutants retained significant resistance and transport activity, indicating that the positively charged side chains at these positions conferred the transport function. On the other hand, neither the Ala, Cys, nor Lys replacement mutant of Arg101 exhibited any drug resistance or transport activity. As for the reactivity of the Cys replacement mutants, only two (Arg71 --> Cys and Arg101 --> Cys) were not reactive with NEM, the other five mutants being highly or moderately reactive. The reactivity of the cysteine-scanning mutants around Arg101 with NEM revealed that Arg101 is located in transmembrane helix IV. It is not likely that Arg101 confers the protein folding through a salt bridge with a transmembrane acidic residue because no double mutants involving Arg101 --> Ala and the replacement of one of three transmembrane acidic residues (Asp15, Asp84, and Asp285) showed the recovery of any tetracycline resistance or transport activity. The effect of tetracycline on the [14C]NEM binding to the combined mutants S65C/R101A and L97C/R101A suggests that Arg101 may cause a substrate-induced conformational change of the putative exit gate of TetA(B).  相似文献   

13.
The cyanide-resistant alternative oxidase of plant mitochondria is a homodimeric protein whose activity can be regulated by a redox-sensitive intersubunit sulfhydryl/disulfide system and by alpha-keto acids. After determining that the Arabidopsis alternative oxidase possesses the redox-sensitive sulfhydryl/disulfide system, site-directed mutagenesis of an Arabidopsis cDNA clone was used to individually change the two conserved Cys residues, Cys-128 and Cys-78, to Ala. Using diamide oxidation and chemical cross-linking of the protein expressed in Escherichia coli, Cys-78 was shown to be: 1) the Cys residue involved in the sulfhydryl/disulfide system; and 2) not required for subunit dimerization. The C128A mutant was stimulated by pyruvate, while the C78A mutant protein had little activity and displayed no stimulation by pyruvate. Mutating Cys-78 to Glu produced an active enzyme which was insensitive to pyruvate, consistent with alpha-keto acid activation occurring through a thiohemiacetal. These results indicate that Cys-78 serves as both the regulatory sulfhydryl/disulfide and the site of activation by alpha-keto acids. In light of these results, the previously observed effects of sulfhydryl reagents on the alternative oxidase of isolated soybean mitochondria were re-examined and were found to be in agreement with a single sulfhydryl residue being the site both of alpha-keto acid activation and of the regulatory sulfhydryl/disulfide system.  相似文献   

14.
Cysteine 195 in isocitrate lyase from Escherichia coli has been replaced by directed mutagenesis. Substitution by Ser yields enzyme with a k(cat) that is 0.03% that of wild type, and substitution by Ala, Gly, Thr, or Val yields completely inactive enzyme. The present results are consistent with a functional role of Cys 195.  相似文献   

15.
A wide range (69) of mutant Escherichia coli alkaline phosphatases with single amino acid substitutions at positions from -5 to +1 of the signal peptide were obtained for studying protein processing as a function of the primary structure of the cleavage region. Amber suppressor mutagenesis, used to create mutant proteins, included: (i) introduction of amber mutations into respective positions of the phoA gene; and (ii) expression of each mutant phoA allele in E. coli strains producing amber suppressor tRNAs specific to Ala, Cys, Gln, Glu, Gly, His, Leu, Lys, Phe, Pro, Ser and Tyr. Most amino acid substitutions at positions -3 and -1 resulted in a complete block of protein processing. These data give new experimental support for the "-3, -1 rule". Only Ala, Gly and Ser at position -1 allowed protein processing, and Ala provided the highest rate of processing. The results revealed the more conservative nature of the amino acids at the -1 position of signal peptides of Gram-negative bacteria as compared with those of eukaryotic organisms. Position -3 was less regular, since not only Ala, Ser and Gly, but also Leu and Cys at this position, allowed the processing. Mutations at position -4 had an insignificant effect on the processing. Surprisingly, efficient processing was provided mainly by large amino acid residues at position -2 and by middle-sized residues at position -5, indicating that the processing rate is affected by the size of amino acid residues not only at positions -1 and -3. Conformation analysis of the cleavage site taken together with the mutation and statistical data suggests an extended beta-conformation of the -5 to -1 region in the signal peptidase binding pocket.  相似文献   

16.
Ras proteins, fungal mating pheromones, and other proteins terminating in the sequence CaaX (where C is Cys, a is any aliphatic amino acid, and X is the C-terminal residue) are posttranslationally prenylated. Farnesyl-protein transferase (FPTase) transfers the farnesyl moiety of farnesyl pyrophosphate (FPP) to the thiol of the CaaX box cysteine in a reaction that requires Zn2+ and Mg2+. We have created mutations in conserved amino acids of the yeast Ram1 protein to identify residues important for Zn2+-dependent FPTase activity. Wild-type and mutant Ram1 proteins were expressed as operon fusions in bacteria, and FPTase activity was measured. Mutations in conserved residues Glu256, His258, Asp307, Cys309, Asp360, and His363 reduce FPTase activity. Asp307, Cys309, and His363 correspond to the residues that have been shown to coordinate Zn2+ in mammalian FPTase. The H258N mutant enzyme exhibited an increased sensitivity to the Zn2+ chelator 1,10-phenanthroline, required higher concentrations of Zn2+ to restore activity to the apoenzyme, and had a 10-fold reduction in catalytic efficiency. The decreases in FPTase activity observed do not appear to be caused by major structural perturbations because the mutants were stably expressed and retained the ability to interact with Ram2p during purification. The FPTase activity of the mutants measured in vitro correlated well with their ability to complement the mating and growth defects of a ram1Delta strain in vivo.  相似文献   

17.
We previously demonstrated by site-directed mutagenesis analysis that the amino acid residues at positions 62 and 214 to 216 in the N-terminal region of mouse hepatitis virus (MHV) spike (S) protein are important for receptor-binding activity (H. Suzuki and F. Taguchi, J. Virol. 70:2632-2636, 1996). To further identify the residues responsible for the activity, we isolated the mutant viruses that were not neutralized with the soluble form of MHV receptor proteins, since such mutants were expected to have mutations in amino acids responsible for receptor-binding activity. Five soluble-receptor-resistant (srr) mutants isolated had mutations in a single amino acid at three different positions: one was at position 65 (Leu to His) (srr11) in the S1 subunit and three were at position 1114 (Leu to Phe) (srr3, srr4, and srr7) and one was at position 1163 (Cys to Phe) (srr18) in the S2 subunit. The receptor-binding activity examined by a virus overlay protein blot assay and by a coimmunoprecipitation assay showed that srr11 S protein had extremely reduced binding activity, while the srr7 and srr18 proteins had binding activity similar to that of wild-type cl-2 protein. However, when cell surface receptors were used for the binding assay, all srr mutants showed activity similar to that of the wild type or only slightly reduced activity. These results, together with our previous observations, suggest that amino acids located at positions 62 to 65 of S1, a region conserved among the MHV strains examined, are important for receptor-binding activity. We also discuss the mechanism by which srr mutants with a mutation in S2 showed high resistance to neutralization by a soluble receptor, despite their sufficient level of binding to soluble receptors.  相似文献   

18.
We report here the cloning and functional analysis of a novel homologue of the mitochondrial carriers predominantly expressed in the central nervous system and referred to as BMCP1 (brain mitochondrial carrier protein-1). The predicted amino acid sequence of this novel mitochondrial carrier indicates a level of identity of 39, 31, or 30%, toward the mitochondrial oxoglutarate carrier, phosphate carrier, or adenine nucleotide translocator, respectively, and a level of identity of 34, 38, or 39% with the mitochondrial uncoupling proteins UCP1, UCP2, or UCP3, respectively. Northern analysis of mouse, rat, or human tissues demonstrated that mRNA of this novel gene is mainly expressed in brain, although it is 10-30-fold less expressed in other tissues. In situ hybridization analysis of brain showed it is particularly abundant in cortex, hippocampus, thalamus, amygdala, and hypothalamus. Chromosomal mapping indicates that BMCP1 is located on chromosome X of mice and at Xq24 in man. Expression of the protein in yeast strongly impaired growth rate. Analysis of respiration of total recombinant yeast or yeast spheroplasts and in particular of the relationship between respiratory rate and membrane potential of yeast spheroplasts revealed a marked uncoupling activity of respiration, suggesting that although BMCP1 sequence is more distant from the uncoupling proteins (UCPs), this protein could be a fourth member of the UCP family.  相似文献   

19.
Using a functional lactose permease mutant devoid of Cys (C-less permease), each amino acid residue in putative transmembrane helix V was replaced individually with Cys (from Met145 to Thr163). Of the 19 mutants, 13 are highly functional (60-125% of C-less permease activity), and 4 exhibit lower but significant lactose accumulation (15-45% of C-less permease). Cys replacement of Gly147 or Trp151 essentially inactivates the permease (< 10% of C-less); however, previous studies [Menezes, M. E., Roepe, P. D., & Kaback, H. R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1638; Jung, K., Jung, H., et al. (1995) Biochemistry 34, 1030] demonstrate that neither of these residues is important for activity. Immunoblots reveal that all of the mutant proteins are present in the membrane in amounts comparable to C-less permease with the exception of Trp151-->Cys and single Cys154 permeases which are present in reduced amounts. Finally, only three of the single-Cys mutants are inactivated significantly by N-ethylmaleimide (Met145-->Cys, native Cys148, and Gly159-->Cys), and the positions of the three mutants fall on the same face of helix V.  相似文献   

20.
Six site-directed mutants of cytochrome P450 2B1 were constructed, and function was evaluated in COS cell microsomes by monitoring testosterone and androstenedione hydroxylation and inactivation by chloramphenicol. Mutants Ile-114-->Val and Ile-114-->Ala exhibited marked decreases in androgen 16 beta-OH:16 alpha-OH ratios and increases in 15 alpha-OH:16-OH ratios. Since substitution of Gly-478 with Ala or Ser reduces 16 beta-hydroxylation in favor of 15 alpha-hydroxylation, four double mutants containing Val or Ala at position 114 and Ala or Ser at position 478 were examined. For any given residue at position 114 (Ile, Val, or Ala), the 15 alpha-OH:16-OH ratio increased as residue 478 was changed from Gly to Ala to Ser, and for any residue at position 478, this ratio increased as residue 114 was changed from Ile to Val to Ala. As a consequence, the Ile-114-->Ala, Gly-478-->Ser mutant displayed an approximately 1000-fold higher androgen 15 alpha-OH:16-OH ratio compared with the parental enzyme and functionally resembles mouse P450 2A4 much more closely than P450 2B1. All three mutants with Val at position 114 retained susceptibility to inactivation by chloramphenicol, whereas inactivation was suppressed by Ala at this position. The results suggest the feasibility of an empirical approach to P450 engineering involving the appropriate combination of residues at a few critical sites to confer new regio- and stereoselectivity with retention of overall monooxygenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号