首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
韩翰  耿林  吕伟强 《激光与红外》2022,52(11):1629-1634
应用于不同领域的超窄脉冲激光驱动器要求输入脉冲宽度极窄,并且大范围内可调。传统的模拟器件可调性差难以满足要求,数字器件例如专用集成电路(ASIC)尽管脉冲宽度可以实现超窄输出,但是大范围内可调不易满足,并且存在可扩展性差,价格昂贵等特点,同样不利于推广。现场可编程门阵列(FPGA)程控性好,因此在脉冲激光驱动器中的数字脉冲源得到了很好的应用,但是传统的计数方法只能实现脉宽为时钟周期倍数的脉冲输出,因此只能应用于对窄脉宽要求不高的情形。为解决上述问题,本文基于FPGA设计了一种应用于超窄脉冲激光驱动器,在50 MHz时钟频率下利用锁相环倍频成多个通道的基准时钟,并分别利用上升下降沿计数器进行计数,再经不同逻辑运算输出的数字脉冲产生方法。最终的数字电路可以产生脉宽2~50 ns,步长1 ns可调,重复频率1 Hz~1 MHz的数字脉冲信号。最后分析了在高精度锁相环等硬件条件满足的情况下,该方法可以实现亚纳秒脉宽和步长的数字脉冲信号输出,因此具备了很好的可拓展性和前景。  相似文献   

2.
A low jitter,low spur multiphase phase-locked loop(PLL) for an impulse radio ultra-wideband(IR-UWB) receiver is presented.The PLL is based on a ring oscillator in order to simultaneously meet the jitter requirement, low power consumption and multiphase clock output.In this design,a noise and matching improved voltage-controlled oscillator(VCO) is devised to enhance the timing accuracy and phase noise performance of multiphase clocks.By good matching achieved in the charge pump and careful choice of the l...  相似文献   

3.
A digitally controlled phase-locked loop (DCPLL) that achieves fast acquisition by employing a digital phase-frequency detector (DPFD) and a variable loop gain scheme was developed for an advanced clock synthesizer and was fabricated in a 3.3-V 0.6-μm CMOS process. The DPFD was developed to measure the frequency difference and to generate digital outputs corresponding to the difference. Using these features, the DCPLL achieves ideally one-cycle frequency acquisition when programmed with an appropriate gain. The experimental results show that the fabricated DCPLL exhibits three-cycle and one-cycle frequency acquisitions, when locking to 400 MHz (VCO at 800 MHz) and 200 MHz (VCO at 400 MHz), respectively  相似文献   

4.
This brief describes a fast-lock mixed-mode delay-locked loop (DLL) for wide-range operation and multiphase outputs. The architecture of the proposed DLL uses the mixed-mode time-to-digital-converter scheme for a frequency-range selector and a coarse tune circuit to reduce the lock time. A multi-controlled delay cell for the voltage-controlled delay line is applied to provide the wide operating frequency range and low-jitter performance. The charge pump circuit is implemented using a digital control scheme to achieve adaptive bandwidth. The chip is fabricated in a 0.25-mum standard CMOS process with a 2.5-V power-supply voltage. The measurements show that this DLL can be operated correctly when the input clock frequency is changed from 32 to 320 MHz, and can generate ten-phase clocks within a single cycle without the false locking problem associated with conventional DLLs and wide-range operation. At 200 MHz, the measured rms random jitter and peak-to-peak deterministic jitter are 4.44 and 15 ps, respectively. Moreover, the lock time is less than 22 clock cycles. This DLL occupies less area (0.07 mm2) and dissipates less power (15 mW) than other wide-range DLLs.  相似文献   

5.
A 250-622 MHz clock buffer has been developed, using a two-loop architecture: a delay-locked loop (DLL) for deskew, and a frequency-locked loop (FLL) for reference frequency supply to the DLL. The DLL incorporates a current-mode phase detector which utilizes a flip-flop metastability to detect a phase difference in the order of 20 ps. A measured jitter is suppressed to less than 40 ps RMS over the operating frequency range. A DLL acquisition time of 150 ns typical is simulated at 400 MHz. A 0.4-μm CMOS technology is used to fabricate the chip  相似文献   

6.
High frequency clock rate is a key issue in today's VLSI. To improve performance on-chip, clock multipliers are used. But it is a difficult task to design such circuits while maintaining low cost. This paper presents a circuit fabricated to test a new method of clock frequency multiplication. This new approach uses a digital CMOS process in order to implement a fully integrated digital delay locked loop. This multiplier does not require external components. Moreover, as it is primarily intended for ASIC design, it is generated by a parameterized generator written in C which relies on a portable digital standard cell library for automatic place and route. The design based on the delay locked loop allows the clock waveform to reach its operating point faster than conventional methods. Special techniques enable high multiplication factors (between 4 and 20) without compromising the timing accuracy. With a clock multiplier of 20, in 1 μm CMOS process and a 5 V supply voltage, a 170 MHz clock signal has been obtained from a 8.5 MHz external clock with a measured jitter lower than 300 ps  相似文献   

7.
This paper describes an all-analog multiphase delay-locked loop (DLL) architecture that achieves both wide-range operation and low-jitter performance. A replica delay line is attached to a conventional DLL to fully utilize the frequency range of the voltage-controlled delay line. The proposed DLL keeps the same benefits of conventional DLLs such as good jitter performance and multiphase clock generation. The DLL incorporates dynamic phase detectors and triply controlled delay cells with cell-level duty-cycle correction capability to generate equally spaced eight-phase clocks. The chip has been fabricated using a 0.35-μm CMOS process. The peak-to peak jitter is less than 30 ps over the operating frequency range of 62.5-250 MHz, At 250 MHz, its jitter supply sensitivity is 0.11 ps/mV. It occupies smaller area (0.2 mm2) and dissipates less power (42 mW) than other wide-range DLL's [2]-[7]  相似文献   

8.
This paper presents a wide-range all digital delay-locked loop (DLL) for multiphase clock generation. Using the phase compensation circuit (PCC), the large phase difference is compensated in the initial step. Thus, the proposed solution can overcome the false-lock problem in conventional designs, and keeps the same benefits of conventional DLLs such as good jitter performance and multiphase clock generation. Furthermore, the proposed all digital multiphase clock generator has wide ranges and is not related to specific process. Thus, it can reduce the design time and design complexity in many different applications. The DLL is implemented in a 0.13 μm CMOS process. The experimental results show that the proposal has a wide frequency range. The peak-to-peak jitter is less than 7.7 ps over the operating frequency range of 200 MHz-1 GHz and the power consumption is 4.8 mW at 1 GHz. The maximum lock time is 20 clock cycles.  相似文献   

9.
This paper describes the architecture and components of a high-speed clock and data recovery (CDR) circuit. Fully differential CMOS circuits are presented for an integrated physical layer controller of a 622-Mb/s (OC-12) system, although the design can be used in other systems with clock speeds in the 622-933-MHz range. Simulations and experimental results are presented for the building blocks including novel designs for a current-controlled oscillator (CCO) and a differential charge pump. The CCO is based on a two-stage ring oscillator. It consists of parallel differential amplifier pairs which reliably generate the necessary phase shift and gain to fulfill the oscillation conditions over process and temperature variations. Two test chips are implemented in 0.35-μm CMOS. One contains partitioned building blocks of a phase-locked loop (PLL) which, together with an external loop filter, can be used for flexible testing and CDR applications. The other chip is a monolithic CDR with integrated loop filter. It exhibits a power consumption of 0.2 W and a measured rms clock jitter of 12.5 ps at 933 MHz  相似文献   

10.
Multiphase clock generators are conventionally implemented with a feedback loop. This paper presents a non-feedback approach to generate multiphase clocks. A simple architecture of direct phase interpolation is proposed, in which the edges of two phase-adjacent signals are used to control the discharge (or charge) of two capacitors respectively, producing time-overlapped slopes. A resistor chain connected to the two capacitors is used to interpolate a number of new slopes in between. The generated phase resolution depends on the number and ratios of resistors thus is not limited by an inverter delay. Based on this architecture, a multiphase clock generator is developed. In addition, a phase error averaging circuit is used to correct interphase errors. The multiphase clock generator has been fabricated in a 0.35 m, 3.3 V CMOS process. The measured performance shows it can produce 8 evenly spaced clock signals in one input clock period and work in an input clock range from 300 MHz to 600 MHz. The measured maximum jitter performance is rms 6.8 ps and peak-to-peak 47 ps, respectively.  相似文献   

11.
黄海生  刘宇 《微电子学》2001,31(4):304-306
提出了一种从 E1信号中提取时钟的全数字锁相环。采用半脉宽移动技术设计数控振荡器 (DCO) ,使输出时钟占空比的误差小于 4%。经实验证实 ,在输入信号的频率范围为 2 .0 4 8MHz± 90 ppm且抖动满足 ITU- T G.82 3的情况下 ,该电路完全可以用于从 E1信号中提取时钟。采用数字锁相环对系统集成大有好处。  相似文献   

12.
利用直接数字频率合成(DDS)和锁相环(PLL)技术相结合的混合频率合成方案,研制了一种C波段宽带、高频率分辨率、快速线性扫频的频率源。为了给PLL 提供低相位噪声的宽带扫频参考信号,选用ADI 的DDS芯片AD9914,并利用阶跃恢复二极管(SRD)高次倍频电路结合二倍频器产生高达3400 MHz 的时钟信号。通过上位机配置AD9914 内部频率调谐字和数字斜坡发生器,产生512.5-987.5MHz 的扫频参考信号,其频率分辨率可精细到赫兹量级。选用低附加噪声的鉴相器和宽带VCO 芯片设计C 波段锁相源,在宽带工作频率范围内对DDS 扫频信号进行快速跟踪,并有效抑制杂散信号。实测结果表明,该扫频源工作频率为4. 1- 7. 9 GHz,在频率分辨率配置为0. 38 MHz 时,单向扫频周期为1 ms,扫频线性度为1. 58×10-6 。单频点输出时相位噪声优于-114 dBc/ Hz@ 10 kHz和-119 dBc/ Hz@ 100 kHz,杂散抑制优于69 dBc。  相似文献   

13.
A 10-Gb/s 16:1 multiplexer, 10-GHz clock generator phase-locked loop (PLL), and 6 × 16 b input data buffer are integrated in a 0.25-μm SiGe BiCMOS technology. The chip multiplexes 16 parallel input data streams each at 622 Mb/s into a 9.953-Gb/s serial output stream. The device also produces a 9.953-GHz output clock from a 622- or 155-MHz reference frequency. The on-board 10-GHz voltage-controlled oscillator (VCO) has a 10% tuning range allowing the chip to accommodate both the SONET/SDH data rate of 9.953 Gb/s and a forward error correction coding rate of 10.664 Gb/s. The 6 × 16 b input data buffer accommodates ±2.4 ns of parallel input data phase drift at 622 Mb/s. A delay-locked loop (DLL) in the input data buffer allows the support of multiple input clocking modes. Using a clock generator PLL bandwidth of 6 MHz, the 9.953-GHz output clock exhibits a generated jitter of less than 0.05 UIP-P over a 50-kHz to 80-MHz bandwidth and jitter peaking of less than 0.05 dB  相似文献   

14.
本文设计了一种0.1G-1.5GHz,3.07pS RMS 抖动的多相位输出锁相环。通过引入双路径电荷泵,极大的减小了锁相环中的低通滤波器的尺寸。基于指定的功耗约束,提出了一种新颖的压控振荡器、电荷泵与鉴频鉴相器的尺寸优化方法,使用该方法,每个模块输出相位噪声减小了约3-6dBc/Hz。该锁相环在55nm的工艺下流片,集成了16pF的MOM电容,占用面积仅为0.05平方毫米。输出1.5GHz信号时,功耗2.8mW,相位噪声为-102dBc/Hz@1MHz。  相似文献   

15.
One of the most important parameters in the design of synthesizers is lock time. A new fast lock delay locked loop (DLL) based frequency multiplier is proposed in this paper. Phase detector, charge pump and loop filter in conventional DLLs are replaced by a digital signal processor in the proposed structure. This leads to have better lock time, higher speed and smaller chip aria. The proposed structure can be implemented easily in a real system by means of a suitable powerful digital signal processor. Simulation has been done for 11 delay cells as a delay chain and input frequency equal with 300 MHz. The output frequency is multiplied by 11 (fOUT = 3.3 GHz), and lock time is obtained about 13 ns which is equal to 4 clock cycles of reference clock.  相似文献   

16.
A fully integrated, phase-locked loop (PLL) clock generator/phase aligner for the POWER3 microprocessor has been designed using a 2.5-V, 0.40-μm digital CMOS6S process. The PLL design supports multiple integer and noninteger frequency multiplication factors for both the processor clock and an L2 cache clock. The fully differential delay-interpolating voltage-controlled oscillator (VCO) is tunable over a frequency range determined by programmable frequency limit settings, enhancing yield and application flexibility. PLL lock range for the maximum VCO frequency range settings is 340-612 MHz. The charge-pump current is programmable for additional control of the PLL loop dynamics. A differential on-chip loop filter with common-mode correction improves noise rejection. Cycle-cycle jitter measurements with the microprocessor actively executing instructions were 10.0 ps rms, 80 ps peak to peak (P-P) measured from the clock tree. Cycle-cycle jitter measured for the processor in a reset state with the clock tree active was 8.4 ps rms, 62 ps P-P. PLL area is 1040×640 μm2. Power dissipation is <100 mW  相似文献   

17.
A novel Force/Release technique is proposed to eliminate the harmonic locking issue, which occurs in wide-range operation of Delay Locked Loops (DLLs). The proposed technique does not require replica delay line or multiphase clocks for frequency estimation, and hence, reduces the chip area and power consumption. Moreover, it can be employed, without modifications, to any type of the delay line controller. In addition, an area efficient technique for multi-bit Successive Approximation Register (SAR) DLL is proposed. A complete All-Digital DLL (ADDLL) design implementing the proposed Force/Release technique and the proposed 2-bit SAR scheme is developed. All design units are fully digital, described in Verilog and mapped to silicon using the IBM 0.13 μm Artisan standard cell library. The proposed design has an active area of 0.014 mm2 and can operate from 110 MHz to 1 GHz with a fixed latency of one clock cycle. It locks in 12 clock cycles and has a closed loop characteristics.  相似文献   

18.
This work presents a clock generator with cascaded dynamic frequency counting (DFC) loops for wide multiplication range applications. The DFC loop, which uses variable time period to estimate and tune the frequency of the digitally controlled oscillator (DCO), enhances the resolution of frequency detection. The conventional phase-frequency detector (PFD) and programmable divider are replaced with a digital arithmetic comparator and a DCO timing counter. The value in the DCO timing counter is separated into quotient and remainder vectors. A threshold region is set in the remainder vector to reduce the influence of jitter variation in frequency detection. The loop stability can be retained by cascading two DFC loops when the multiplication factor (N) is large. The proposed clock generator achieves a multiplication range from 4 to 13 888 with output peak-to-peak jitter less than 2.8% of clock period. A test chip for the proposed clock generator is fabricated in 0.18-/spl mu/m CMOS process with core area of 0.16 mm/sup 2/. Power consumption is 15 mW @ 378 MHz with 1.8-V supply voltage.  相似文献   

19.
徐壮  俞慧月  张辉  林霞 《半导体技术》2011,36(12):953-956
基于整数分频锁相环结构实现的时钟发生器,该时钟发生器采用低功耗、低抖动技术,在SMIC 65 nm CMOS工艺上实现。电路使用1.2 V单一电源电压,并在片上集成了环路滤波器。其中,振荡器为电流控制、全差分结构的五级环形振荡器。该信号发生器可以产生的时钟频率范围为12.5~800MHz,工作在800 MHz时所需的功耗为1.54 mW,输出时钟的周期抖动为:pk-pk=75 ps,rms=8.6 ps;Cycle-to-Cycle抖动为:pk-pk=132 ps,rms=14.1 ps。电路的面积为84μm2。  相似文献   

20.
在FPGA芯片内,数字时钟管理器(DCM)不可或缺,DCM主要完成去时钟偏移、频率综合和相位调整的功能,其分别由延迟锁相环(DLL)、数字频率合成器(DFS)以及数字相移器(DPS)三个模块来实现。对这三个模块的原理及设计进行了详细地阐述,并给出了仿真结果,该DCM电路通过了0.13μm工艺流片。测试结果表明,在低频模式下,该DCM能工作在24~230 MHz之间;在高频模式下,该DCM能工作在48~450 MHz之间,其输入及输出抖动容忍度在低频模式下能达到300 ps,在高频模式下能达到150 ps。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号