首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pure K0.5Na0.5NbO3 lead-free piezoelectric ceramics without any dopants/additives were sintered at various temperatures (950–1125 °C) in low pO2 atmosphere (pO2?~?10?6 atm). All ceramics exhibit high relative densities (>?94%) and low weight loss (<?0.6%). Compared to the ceramics sintered in air, the ceramics sintered in low pO2 exhibit improved electrical properties. The piezoelectric constant d33 and converse piezoelectric constant d33* are 112 pC/N and 119 pm/V, respectively. The ceramics show typical ferroelectric behavior with the remnant polarization of 21.6 µC/cm2 and coercive field of 15.5 kV/cm under measurement electric field of 70 kV/cm. The good electrical properties of the present samples are related to the suppression of volatility of the alkali cations during the sintering process in low pO2 atmosphere.  相似文献   

2.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

3.
The Bi1?+?xFe0.95Cr0.05O3 (BFCO) (x?=?0, 5, 10, 15 and 20%) thin films are fabricated on FTO/glass substrate using a chemical solution deposition method and sequential-layer annealing process. The effects of the excess Bi content on crystalline structure, morphology, and electrical performance of BFCO thin films are investigated. All the BFCO thin films are crystallized into polycrystalline perovskite structure and belonging to the space group of R3c. The BFCO thin films with 5 and 10% excess Bi contents possess no impurity phase. Especially, a dense surface morphology and columnar crystal structure can be obtained for the film with 5% excess Bi content. Especially, the one possesses superior ferroelectricity with a relative high remnant polarization (P r) of 69.8 µC/cm2 and low coercive electric field (E c) of 291 kV/cm at 1 kHz due to the relatively low leakage current density of 3.04?×?10??5 A/cm2 at 200 kV/cm.  相似文献   

4.
Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The crystalline structure and the surface morphology of the films were markedly affected by the growth conditions. Rietveld analysis reveal a CCTO film with 100 % pure perovskite belonging to a space group Im3 and pseudo-cubic structure. The XPS spectroscopy reveal that the in a reducing N2 atmosphere a lower Cu/Ca and Ti/Ca ratio were detected, while the O2 treatment led to an excess of Cu, due to Cu segregation of the surface forming copper oxide crystals. The film present frequency -independent dielectric properties in the temperature range evaluated, which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 600-nm-thick CCTO films annealed at 600 °C at 1 kHz was found to be 70. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10?7 A/cm2 at a 1.0 V. The current–voltage measurements on MFS capacitors established good switching characteristics.  相似文献   

5.
Barium-cobalt-bismuth-niobate, Ba0.5Co0.5Bi2Nb2O9 (BCoBN) nanocrystalline ferroelectric ceramic was prepared through chemical route. XRD analysis showed single phase layered perovskite structure of BCoBN when calcined at 650 °C, 2 h. The average crystallite size was found to be 18 nm. The microstructure was studied through scanning electron microscopy. The dielectric and ferroelectric properties were investigated in the temperature range 50–500 °C. The dielectric constant and dielectric loss plot with respect to temperature both indicated strong relaxor behavior. Frequency versus complex impedance plot also supported the relaxor properties of the material. The impedance spectroscopy study showed only grain conductivity. Variation of ac conductivity study exhibited Arrhenius type of electrical conductivity where the hopping frequency shifted towards higher frequency region with increasing temperature. The ac conductivity values were used to evaluate the density of state at the Fermi level. The minimum hopping distance was found to be decreased with increasing temperature.  相似文献   

6.
Carbon-coating Na3V2(PO4)2F3 nanoparticles (NVPF@C NP) were prepared by a hydrothermal assisted sol–gel method and applied as cathode materials for Na-ion batteries. The as-prepared nanocomposites were composed of Na3V2(PO4)2F3 nanoparticles with a typical size of ~?100 nm and an amorphous carbon layer with the thickness of ~?5 nm. Cyclic voltammetry, rate and cycling, and electrochemical impedance spectroscopy tests were used to discuss the effect of carbon coating and nanostructure. Results display that the as-prepared NVPF@C NP demonstrates a higher rate capability and better long cycling performance compared with bare Na3V2(PO4)2F3 bulk (72 mA h g?1 at 10 C vs 39 mA h g?1 at 10 and 1 C capacity retention of 95% vs 88% after 50 cycles). The remarking electrode performance was attributed to the combination of nanostructure and carbon coating, which can provide short Na-ion diffusion distance and rapid electron migration.  相似文献   

7.
Kesterite, Cu2ZnSnS4 (CZTS), is a promising absorber layer for use in photovoltaic cells. We report the use of copper, zinc and tin xanthates in melt reactions to produce Cu2ZnSnS4 (CZTS) thin films. The phase of the as-produced CZTS is dependent on decomposition temperature. X-ray diffraction patterns and Raman spectra show that films annealed between 375 and 475 °C are tetragonal, while at temperatures <375 °C hexagonal material was obtained. The electrical parameters of the CZTS films have also been determined. The conduction of all films was p-type, while the other parameters differ for the hexagonal and tetragonal materials: resistivity (27.1 vs 1.23 Ω cm), carrier concentration (2.65 × 10+15 vs 4.55 × 10+17 cm?3) and mobility (87.1 vs 11.1 cm2 V?1 s?1). The Hall coefficients were 2.36 × 103 versus 13.7 cm3 C?1.  相似文献   

8.
Nanocrystalline thin films of TiO2 have been synthesized by sol gel spin coating technique Thin films of TiO2 annealed at 700 °C were characterized by X-ray diffraction(XRD), Atomic Force Microscopy, High resolution TEM and Scanning Electron Microscopy (SEM), The XRD shows formation of tetragonal anatase and rutile phases with lattice parameters a = 3.7837 Å and c = 9.5087 Å. The surface morphology of the TiO2 films showed that the nanoparticles are fine with an average grain size of about 60 nm. Optical studies revealed a high absorption coefficient (104 cm?1) with a direct band gap of 3.24 eV. The films are of the n type conduction with room temperature electrical conductivity of 10?6 (Ω cm)?1.  相似文献   

9.
In this study, nanorods and nanosheets structure of Li4Ti5O12 (LTO) with higher capacity and cycle performance are prepared by hydrothermal synthesis. We can obtain different nanostructural LTO by changing heating time in autoclave and molar ratio between lithium (Li) and titanium (Ti). Precursor was calcined at 600 °C for 6 h in air after heating to 180 °C with the holding time of 12 and 24 h in Teflon-lined PTFE autoclave vessel, nanorods and nanosheets structure of LTO were prepared successfully, respectively. Specially, when the molar ratio between Li and Ti was 4.2:5, the discharge capacities were 177.7 and 230.7 mAh g?1 at 20 mA g?1, respectively. When the holding time was 24 h as well as molar ratio between Li and Ti was 4.2:5, the band gap was least, and this pure LTO reversible capacities reached 90.36 and 73.12% after 200 and 3000 cycles at 100 mA g?1 and 1 A g?1, respectively.  相似文献   

10.
Strontium aluminates are important compounds with interesting properties such as long-duration phosphorescence and elastico-deformation luminescence. They have potential application in flexible light emitting panels. Since there are serious discrepancies in available thermodynamic data for these compounds, a redetermination of their Gibbs energies of formation was undertaken using solid-state electrochemical cells incorporating single-crystal SrF2 as the electrolyte in the temperature range from 1000 to 1300 K. However, the measurements were restricted to SrAl12O19 and SrAl4O7 because of the formation of strontium oxyfluoride phase between SrAl2O4 and SrF2. For the reactions, SrO + 6 Al2O3 → SrAl12O19, ΔG o/J mol?1 (± 280) = ?83386 ? 25.744 (T/K), and SrO + 2Al2O3 → SrAl4O7, ΔG o/J mol?1 (± 240) = ?80187 ? 25.376 (T/K). The high entropy of SrAl4O7 and SrAl12O19 can be partly related to their complex structures. The results of this study are consistent with calorimetric data on enthalpy of formation of other Sr-rich aluminates and indicate only marginal stability for SrAl4O7 relative to its neighbours, SrAl12O19 and SrAl2O4. The thermodynamic data explain the difficulty in direct synthesis of phase pure SrAl4O7 and the formation of SrAl2O4 as the initial ternary phase when reacting SrO and Al2O3 or crystallizing from amorphous state, irrespective of composition.  相似文献   

11.
A new solution method to synthesize Na2Ti5O11 with titanium powder is presented, and the C/Na2Ti5O11 nanocomposite with high specific surface area and tunnel structure as the electrode material has excellent electrochemical performance. The single electrode composed of the C/Na2Ti5O11 nanocomposite based on carbon fiber fabric (CFF) has the highest area capacitance of 1066 mF cm?2 at a current density of 2 mA cm?2, which is superior to other titanates and Na-ion materials for supercapacitors (SCs). By scan-rate dependence cyclic voltammetry analysis, the capacity value shows both capacitive and faradaic intercalation processes, and the intercalation process contributed 81.7% of the total charge storage at the scan rate of 5 mV s?1. The flexible symmetric solid-state SCs (C/Na2Ti5O11/CFF//C/Na2Ti5O11/CFF) based on different C/Na2Ti5O11 mass were fabricated, and 7 mg SCs show the best supercapacitive characteristics with an area capacitance of 309 mF cm?2 and a specific capacitance of 441 F g?1, it has a maximum energy density of 22 Wh kg?1 and power density of 1286 W kg?1. As for practical application, three SCs in series can power 100 green light-emitting diodes (LEDs) to light up for 18 min, which is much longer than our previous work by Wang et al. lighting 100 LEDs for 8 min. Thus, the C/Na2Ti5O11 nanocomposite has promising potential application in energy storage devices.  相似文献   

12.
To meet the demand of electromagnetic absorption, cheap and easily available microwave absorbents are urgently required. As an important functional material, carbon fibers (CFs) have been widely reported, however, too high conductivity easily leads to the impedance mismatch, which is not favorable to the microwave absorbing performance (MAP). To address this challenge, in this study, novel TiO2/Fe3O4/CF composites with tunable magnetic were synthesized by hydrothermal method and characterized by SEM, XRD, XPS and VSM. As absorbents, the minimum reflection loss (RL) value is ??41.52 dB at a thickness of 2.1 mm, and the corresponding bandwidth with effective attenuation (RL?<???10 dB) is up to 5.65 GHz (4.54–10.19 GHz). More importantly, the plausible mechanisms for the enhanced MAP are explored.  相似文献   

13.
Sm3+-doped magnetite (Fe3O4) nanoparticles were synthesized through a one-pot facile electrochemical method. In this method, products were electrodeposited on a stainless steel (316L) cathode from an additive-free 0.005 M Fe(NO3)3/FeCl2/SmCl3 aqueous electrolyte. The structural characterizations through X-ray diffraction, field-emission electron microscopy, and energy-dispersive X-ray indicated that the deposited material has Sm3+-doped magnetite particles with average size of 20 nm. Magnetic analysis by VSM revealed the superparamagnetic nature of the prepared nanoparticles (Ms = 41.89 emu g?1, Mr = 0.12 emu g?1, and H Ci = 2.24 G). The supercapacitive capability evaluation of the prepared magnetite nanoparticles through cyclic voltammetry and galvanostat charge–discharge showed that these materials are capable to deliver specific capacitances as high as 207 F g?1 (at 0.5 A g?1) and 145 F g?1 (at 2 A g?1), and capacity retentions of 94.5 and 84.6% after 2000 cycling at 0.5 and 1 A g?1, respectively. The results proved the suitability of the electrosynthesized nanoparticles for use in supercapacitors. Furthermore, this work provides a facile electrochemical route for the synthesis of lanthanide-doped magnetite nanoparticles.  相似文献   

14.
Structural, vibrational, dielectric and electrical properties of (Na0.5Bi0.5)(Zr0.025Ti0.975)O3 ceramic synthesized by the solid-state reaction technique have been carried out. The X-ray diffraction analysis was indicated as a pure perovskite phase in the rhombohedral structure. The modes of rhombohedral vibrations were appeared in the experimental Raman spectrum at room temperature. The dielectric and electrical properties of the material were investigated by impedance spectroscopy analysis for a broad range of temperatures (50–560 °C) and frequency domain of 102?106 Hz. The dielectric measurement exhibit two phase transitions: a ferro-antiferroelectric transition followed by an antiferro-paraelectric transition at higher temperatures. Complex impedance analysis was carried out in order to distinct the contribution of the grains and the grain boundaries to the total electrical conduction. The Nyquist plot was proved to be a non-Debye relaxation mechanism. The combined spectroscopic plots of the imaginary part of electric impedance and modulus confirmed the non-Debye type behavior. The frequency dependent ac conductivity obeys the double power law behavior and shows three types of conduction process. The significant decrease of dc conductivity spectrum followed the Arrhenius relationship. The values of calculated activation energy of the compound implied that the electrical conduction is mostly due the high oxygen mobility.  相似文献   

15.
We have developed analytical techniques for the determination of impurities in isotopically enriched 28SiH4 and 28SiF4. The impurities in SiF4 were first determined by IR spectroscopy, and those in SiH4, by gas chromatography/mass spectrometry. High-sensitivity determination of organic impurities in SiH4 and SiF4 was performed by gas chromatography. SiF4 was found to contain C1–C4 hydrocarbons, hexafluorodisiloxane (Si2F6O), hydrogen fluoride, trifluorosilanol (SiF3OH), fluorosilanes, water, and carbon oxides. The impurities identified in SiH4 include C1–C4 hydrocarbons, disilane (Si2H6), inorganic hydrides, Si2H6O, alkylsilanes, and fluorinated and chlorinated organics. The detection limits of IR spectroscopy were 3 × 10?3 to 5 × 10?5 mol %, those of gas chromatography/mass spectrometry were 8 × 10?6 to 10?8 mol %, and those of gas chromatography were 6 × 10-6 to 2 × 10?7 mol %.  相似文献   

16.
In order to obtain high temperature coefficient of resistance (TCR) value of La0.67Ca0.33MnO3:Ag x (LCMO:Ag x ) composites, samples with different Ag contents (x?=?0, 0.1, 0.2, 0.25, 0.3, and 0.5) were prepared by sol–gel method. X-ray diffraction analyses indicated that all samples had orthorhombic perovskite structures. As x increased, lattice parameters (a, b, c) and cell volumes underwent slight expansions. Interestingly, the addition of Ag dramatically affected TCR and magneto-resistance (MR) values. Elevated TCR value up to 53.46%·K?1 at 277 K was observed for LCMO:Ag x composites with added Ag at the composition of x?=?0.1. Meanwhile, MR value at 263 K reached 71% at the magnetic field of 1 T for samples with Ag composition of x?=?0.25. The increase in Mn4+/Mn3+ ratio and improvement in crystallization caused by added Ag was found responsible for the elevated values of TCR, MR, and Tp. These findings may have practical use in high-performance magneto-resistive manganites.  相似文献   

17.
In this work, the nominal CaCu3?xMgxTi4.2O12 (0.00, 0.05 and 0.10) ceramics were prepared by sintering pellets of their precursor powders obtained by a polymer pyrolysis solution method at 1100 °C for different sintering time of 8 and 12 h. Very low loss tangent (tanδ)?<?0.009–0.014 and giant dielectric constant (ε′) ~?1.1?×?104–1.8?×?104 with excellent temperature coefficient (Δε′) less than ±?15% in a temperature range of ??60 to 210 °C were achieved. These excellent performances suggested a potent application of the ceramics for high temperature X8R and X9R capacitors. It was found that tanδ values decreased with increasing Mg2+ dopants due to the increase of grain boundary resistance (Rgb) caused by the very high density of grain, resulting from the substitution of small ionic radius Mg2+ dopants in the structure. In addition, CaCu3?xMgxTi4.2O12 ceramics displayed non-linear characteristics with the significant enhancements of a non-linear coefficient (α) and a breakdown field (Eb) due to Mg2+doping. The high values of ε′ (14012), α (13.64) and Eb (5977.02 V/cm) with very low tanδ value (0.009) were obtained in a CaCu2.90Mg0.10Ti4.2O12 ceramic sintered at 1100 °C for 8 h.  相似文献   

18.
A high and stable reversible specific capacity (1277.7 mAh g?1) was successfully achieved by the CoFe2O4/ordered mesoporous carbon nanohybrids (CFO/CMK-3) composite anode at the current density of 0.1 A g?1 after 100 cycles. CFO/CMK-3 electrode also exhibited a stable capacity up to 733.2 and 482.6 mAh g?1 at the current densities of 0.5 and 1 A g?1 after 500 cycles, respectively. The CFO particles were found to be uniformly distributed inside the pore channels of CMK-3. Structure characterization before and after 100 tests revealed that the specific CMK-3 mesoporous structure and CFO crystallites remained unchanged. The stability of the anode composite stability and the rapid redox capability of CFO gave rise to superior lithium storage capacity and excellent cycling stability. CFO/CMK-3 showed a great promise to serve as anode for high-performance lithium-ion battery.  相似文献   

19.
Au/C20H12/n-Si SBD was fabricated and its characteristic parameters such as reverse-saturation current (Io), ideality factor (n), zero-bias barrier height (Φbo), series and shunt resistances (Rs, Rsh) were found as 1.974 × 10?7 A, 6.434, 0.351 eV, 30.22 Ω and 18.96 kΩ at 160 K and 1.061 × 10?6 A, 2.34, 0.836 eV, 5.82 Ω and 24.52 kΩ at 380 K, respectively. While the value of n decreases with increasing temperature, Φbo increases. The change in Φbo with temperature is not agreement with negative temperature coefficient of forbidden band-gap of semiconductor (Si). Thus, Φ bo versus n, Φ bo and (n?1 ? 1) versus q/2kT plots were drawn to obtain an evidence of a Gaussian distribution (GD) of the BHs and all of them have a straight line. The mean value of BH (\( \overline{\varPhi }_{bo} \)) was found as 0.983 eV from the intercept of Φ bo versus n plot (for n = 1). Also, the value of \( \overline{\varPhi }_{bo} \) and standard deviation (σs) were found as 1.123 eV and 0.151 V from the slope and intercept of Φbo versus q/2kT plot. By using the modified Richardson plot, the \( \overline{\varPhi }_{bo} \) and Richardson constant (A*) values were obtained as 1.116 eV and 113.44 A cm?2 K?2 from the slope and intercept of this plot, respectively. It is clear that this value of A* (=113.44 A cm?2 K?2) is very close to their theoretical value of 112 A cm?2 K?2 for n-Si. In addition, the energy density distribution profile of surface states (Dit) was obtained from the forward bias I–V data by taking into account the bias dependent of the effective barrier height (Φ e ) and ideality factor n(V) for four different temperatures (160, 200, 300, and 380 K). In conclusion, the I–V–T measurements of the Au/C20H12/n-Si SBD in the whole temperature range can be successfully explained on the basis of thermionic emission (TE) theory with GD of the BHs.  相似文献   

20.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号