首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrolysis experiments of melamine were carried out under high pressure of 5 GPa and different temperatures. The crystal structure, chemical bonding, and composition of the melamine pyrolysate were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray energy-dispersive analysis (EDX), and combustion elemental analysis. A new C–N–H phase was found in the pyrolysate at 5 GPa and 800 °C. The structure is tentatively indexed as a monoclinic symmetry, with the following lattice parameters: a = 8.5368 (±0.0009)Å, b = 9.1153 (±0.0010)Å, c = 10.2440 (±0.0011)Å, α = γ = 90°, and β = 95.5696 (±0.0016)°. The photoluminescence behavior of the pyrolysates was investigated. A blue emission at 421 nm for the C–N–H phase was observed under the ultraviolet light excitation of 365 nm.  相似文献   

2.
The Cu0.5Tl0.5Ba2Ca2?y Mg y Cu3O10?δ (y=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0) superconductor has been synthesized at the atmospheric pressure by the solid-state reaction method. The zero resistivity critical temperature is found to increase to 98 K with Mg concentration of y=0.6, but saturates to 97 K with further enhancement of Mg to y=0.8, 1.0, and 1.5. The Mg doped material grows in tetragonal structure and follows P4/mmm symmetry with a &; c-axes lengths of 3.894 Å &; 15.091 Å for y=1.5. The axes lengths were decreased with the increase of Mg content in the unit cell, which shows that anisotropy of the material decreases. The critical current density and the quantity of diamagnetism in the samples with Mg contents are higher than in the samples without Mg. In order to realize the effects of decreased axes lengths on the phonon modes of Cu0.5Tl0.5Ba2Ca2?y Mg y Cu3O10?δ , we have carried out FTIR absorption measurements.  相似文献   

3.
4.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

5.
Laminar and large-eddy-simulation (LES) calculations with the dynamic Smagorinsky model evaluate the flow and force on an oscillating cylinder of diameter D = 2R in otherwise calm fluid, for β = D 2/νT in the range 197–61400 and Keulegan–Carpenter number K = U m T/D in the range 0.5–8 (ν kinematic viscosity, T oscillation period, U m maximal velocity). Calculations resolving the streakline patterns of the Honji instability exemplify the local flow structures in the cylinder boundary layer (β ~ 197–300, K ~ 2) but show that the drag and inertia force are not affected by the instability. The present force calculations conform with the classical Stokes–Wang solution for all cases below flow separation corresponding to K < 2 (with β < 61400). The LES calculations of flow separation and vortical flow resolve the flow physics containing a large range of motion scales; it is shown that the energy in the temporal turbulent fluctuations (in fixed points) are resolved. Accurate calculation of the flow separation occurring for K > 2 has strong implication for the force on the cylinder. Present calculations of the force coefficients for K up to 4 and β = 11240 are in agreement with experiments by Otter (Appl Ocean Res 12:153–155, 1990). Drag coeffients when flow separation occurs are smaller than found in U-tube experiments. Inertia coefficients show strong decline for large K (up to 8) and moderate β = 1035 but is close to unity for K = 4 and β = 11240. The finest grid has 2.2 × 106 cells, finest radial Δr/R = 0.0002, number of points along the cylinder circumference of 180, Δz/R = 0.044 and a time step of 0.0005T.  相似文献   

6.
The effect of BiErO3 (BE) as a doping material on the structural, dielectric and ferroelectric properties of (KNa)NbO3 ceramics was explored in this research. Co-existence of two phase regions was confirmed in the composition range at x?=?0.5% and x?=?1.0%. The addition of BE content led to a decrease of the grain size and the ceramics became denser. Bulk P–E hysteresis loops were obtained with a maximum polarization of P max = 30.56 µC/cm2 and a remnant polarization of P r = 25.10 µC/cm2, along with a coercive field of E c  ~ 11.26 kV/cm. The results revealed that a field strain value of ~?0.26 for x?=?0.5% of BE substitution was attained. This presents outstanding piezoelectric and dielectric properties.  相似文献   

7.
The influence of lanthanum content on thermally stimulated luminescence properties of La2xLu2(1?x)SiO5:Ce (x = 0, 0.08, 0.18 and 1.50 at.%) crystals was investigated. Trapping parameters such as electron trap depth Et and electron traps content n 0 were fitted with general order kinetic function. According to the results of the VUV transmittance spectra and band gap calculation which based on the density functional theory with the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA–PBE), band structure of the crystals and recombination mechanisms of released electrons were further studied. Results showed that there were mainly two kinds of electron traps, namely shallow (Et ≈ 0.2 eV) and deep (Et ≈ 1.0 eV) traps. With the increasing of La content, the concentration of deep traps was obviously depressed, and the depth of deep traps decreased at the same time, which was explained by suggesting the downward shift of the bottom of conduction band.  相似文献   

8.
Phase-pure bismuth tantalate fluorites were successfully prepared via conventional solid-state method at 900 °C in 24–48 h. The subsolidus solution was proposed with the general formula of Bi3+x Ta1?x O7?x (0 ≤ x ≤ 0.184), wherein the formation mechanism involved a one-to-one replacement of Ta5+ cation by Bi3+ cation within ~4.6 mol% difference. These samples crystallised in a cubic symmetry, space group Fm-3 m with lattice constants, a = b = c in the range 5.4477(± 0.0037)–5.4580(± 0.0039) Å. A slight increment in the unit cell was discernible with increasing Bi2O3 content, and this may attribute to the incorporation of relatively larger Bi3+ cation in the host structure. The linear correlation between lattice parameter and composition variable showed that the Vegard’s law was obeyed. Both TGA and DTA analyses showed Bi3+x Ta1?x O7?x samples to be thermally stable as neither phase transition nor weight loss was observed within ~28–1000 °C. The AC impedance study of Bi3TaO7 samples was performed over the frequency range 5–13 MHz. At intermediate temperatures, ~350–850 °C, Bi3+x Ta1?x O7?x solid solution was a modest oxide ion conductor with conductivity, ~10?6–10?3 S cm?1; the activation energy was in the range 0.98–1.08 eV.  相似文献   

9.
Computations of incompressible fluid flow and heat transfer around a square obstacle with a nearby adiabatic wall have been performed in a horizontal plane. The ranges of dimensionless control parameters considered are Prandtl number (Pr) = 10–100, Reynolds number (Re) = 1–150 and gap ratio (G) = 0.25–1. The steady-flow regime is observed up to Re = 121 for G = 0.5, and beyond this Re, time-periodic regime is observed. The shift to a time-periodic regime from a steady regime occurred at greater Re than that for an unconfined square obstacle. With increasing Pr, increase in average Nusselt number values is recorded for all Re and G studied. The heat transfer augmentation is approximately 1332% at Re = 150 (Pr = 100, G = 0.25) with regard to the corresponding values at Re = 1. Lastly, a correlation for j h factor is determined for the preceded conditions.  相似文献   

10.
The flame retardancy of 2, 2-bis(4-glycidyloxyphenyl)propane (DGEBA)-aluminum diethylphosphinate (AlPi) nanocomposites (EP-AlPi/(P ? x), x = 1, 2, 3 %) was greatly enhanced by ultrasonic dispersion of nano-sized AlPi into epoxy resin. The UL 94 V-0 rating can be reached for EP-AlPi nanocomposites with a relatively low addition amount of AlPi (on the account of 8.4 wt% or phosphorus content of 2 wt%) as well as the LOI value over 37.2. The glass transition temperature (T g) enhanced properties were investigated by DTA, which showed that: T gs were about 5 °C higher than that of neat epoxy resin; T g increased along with content increasing of AlPi. Based on TGA results under a non-isothermal condition, the thermal degradation kinetics of EP-AlPi/(P ? x) composites were studied by Kissinger’s, Ozawa’s, Flynn–Wall–Ozawa’s and Coast-Redfern’s methods, which suggested the conversion function f (α) = 1/2α ?1 or f (α) = [?ln(1 ? α)]?1 for EP-AlPi/(P ? 1 %); f (α) = [?ln(1 ? α)]?1 for EP-AlPi/(P ? 2 %) and EP-AlPi/(P ? 3 %) during the investigated process. The epoxy resin nanocomposites obtained in this study are green functional polymers and will become flame retardant potential candidates in electronic fields such as printed wiring boards with high performance.  相似文献   

11.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

12.
Monte Carlo (MC) simulation method with the Metropolis algorithm is used to study the magnetic and thermal phase transition properties of a spherical nanoparticle. The system consists of two concentric spheres of rays R C and R S, respectively (R c < R s). For r < R c, the spin is σ = ±3 /2 and ±1 /2, and for R C < rR S, the spin is S = ±7 /2, + 5/2, ±3 /2, and ±1 /2 with antiferromagnetic interface coupling. Between R C and R S, the sites are populated with the probability (p). We present a detailed discussion on the magnetic and thermal phase transition characteristics of the system under consideration. Our investigations show that this system can be used as a magnetic nanostructure possessing potential applications in magnetism.  相似文献   

13.
In this work, (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3xmol MnO (BCTS–xMn) lead-free piezoelectric ceramics were fabricated by the conventional solid-state technique. The composition dependence (0 ≤ x ≤ 3.0 %) of the microstructure, phase structure, and electrical properties was systematically investigated. An O–T phase structure was obtained in all ceramics, and the sintering behavior of the BCTS ceramics was gradually improved by doping MnO content. In addition, the relationship between poling temperature and piezoelectric activity was discussed. The ceramics with x = 1.5 % sintering at temperature of 1330 °C demonstrated an optimum electrical behavior: d 33 ~ 475 pC/N, k p ~ 50 %, ε r ~ 4060, tanδ ~ 0.4 %, P r ~ 10.3 μC/cm2, E c ~ 1.35 kV/mm, T C ~ 82 °C, strain ~0.114 % and \(d_{33}^{*}\) ~ 525 pm/V. As a result, we achieved a preferable electric performance in BaTiO3-based ceramics with lower sintering temperature, suggesting that the BCTS–xMn material system is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

14.
In this work, a nanohybrid material was developed and used for the first time to the kinetic resolution of secondary alcohols as rac-indanol, rac-1-phenylethanol (rac-1), rac-1-(3-bromophenyl)-1-ethanol (rac-2) and rac-1-(3-methylphenyl)-1-ethanol (rac-3). Chiral indanol is used as a precursor intermediate for the synthesis of enantiomeric drugs, such as (+)-Indatraline, Irindalone, Indinavir, (+)-Sertraline and Rasagiline mesylate. Chiral 1-phenylethanol is used as an ophthalmic preservative, a solvatochromic dye and an inhibitor of cholesterol absorption and as a mild floral fragrance. For this purpose, the ultrasound irradiation was used to couple APTES on the superparamagnetic nanoparticles surface. Then, the system was activated with glutaraldehyde and used as a support for immobilization of lipase from Pseudomonas fluorescens. Thermal stability analysis was performed in buffer and hexane, showing an excellent stability in buffer solution at 60 °C, holding 72% of the initial activity, even after 7 h. In hexane (40 °C), the immobilized enzyme retained 100% of activity with 693 min of half-life time at 50 °C. The high thermal stability is mainly related to the covalent bonding between enzymes and support. Immobilized lipase on magnetic support proved to be a robust biocatalyst in the kinetic resolution, leading to (S)-indanol with high selectivity (e.e.?>?99%, E?>?200) in 1.75 h at 50 °C, being reused five times without significant loss of the activity and selectivity. The kinetic resolution of rac-1, via acetylation reaction, catalyzed by lipase from Pseudomonas fluorescens immobilized on magnetic support, led to (R)-acetate with enantiomeric excess?>?99% and to the remaining (S)-alcohol with enantiomeric excess of 94%, conversion of 49% and E?>?200, after 48 h of reaction at 40 °C. Under the same reactions conditions, rac-2 and rac-3 were slightly less reactive, since the corresponding (R)-acetates were obtained with conversion values of 44%, but with high enantioselectivity (enantiomeric excesses?>?99% and E values?>?200). These results correspond to an important step in heterogeneous catalysis due to the ability to obtain important precursors for the synthesis of enantiomerically pure chiral drugs and other bioactive substances.  相似文献   

15.
Our objective was to study the relationship between the design and content of randomized clinical trials (RCTs) and the subsequent number of citations in the medical literature and attention in online news and social media. We studied RCTs published during 2014 in five highly cited medical journals. This was a retrospective review focusing on characteristics of the individual trials and measures of citation and lay media attention. Primary outcome measures included citation count and Altmetric® scores (a composite score measuring attention in news, blogs, Twitter®, and Facebook®). Two hundred and forty two RCTs were included in the final analysis. Trial characteristics that were positive predictors of citation count included investigation of Hepatitis C treatment (r = 0.35, p < 0.001), private funding (r = 0.24, p < 0.001), mortality-related endpoint (r = 0.22, p < 0.001), and research setting within the United States (r = 0.13, p < 0.001). The trial characteristic that positively predicted Altmetric score was the population size potentially affected (r = 0.39, p < 0.001). The only negative predictor of citation count was the size of the population potentially affected (r = ?0.21, p < 0.001). Negative predictors of the Altmetric score included investigation of Hepatitis C treatment (r = ?0.21, p < 0.001) and private funding (r = ?0.13, p < 0.001). While correlation magnitudes were weak, the predictors of biomedical literature citation and non-academic media coverage were different. These predictors may affect editorial decisions and, given the rising influence of health journalism, further study is warranted.  相似文献   

16.
The wing cases (elytra) of Dynastes tityus are able to change coloration from yellow-green in a dry state to deep brown in a wet state due to different degrees of water absorption. An environmental scanning electron microscope was used to investigate the elytra’s reversible color change properties. Because the elytra cuticle has a spongy structure that is composed of laminated chitin and protein, a UV–Vis–NIR spectrophotometer was used to investigate the elytra’s optical properties. The width of the curve peak gradually decreased from 60 to 10 nm when the color of the elytra varied from deep brown to yellow-green. In a humid environment, air between the voids was replaced by water with a higher refractive index that induced an elytra color changed from yellow-green to deep brown. Interestingly, when both humidity and elytra color changed, the elytra’s mechanical properties varied too. When the humidity of the environment changed from 100 to 34%, the reduced modulus (E r) and hardness (H) of the elytra increased 230 and 440%, respectively. The storage modulus (E′) of the elytra is 1.98 ± 0.65 and 1.17 ± 0.22 GPa in yellow-green and deep brown color at 10 Hz, respectively, while their loss modulus (E″) is similar. tan δ of deep brown elytra is 0.072 ± 0.017, which is nearly two times higher than that of yellow-green. It can be demonstrated that when the elytra’s color turns to yellow-green, they are more elastic with less energy loss. The relationship between the elytra’s mechanical properties and structure color will not only help us gain insight into the biological functionality of the color change but also inspire the designs of artificial biomimetic devices.  相似文献   

17.
57Fe Mössbauer spectrum of conductive barium iron vanadate glass with a composition of 20BaO·10Fe2O3·70V2O5 (in mol%) showed paramagnetic doublet peak due to distorted FeIIIO4 tetrahedra with isomer shift (δ) value of 0.37 (±?0.01) mm s?1. Mössbauer spectra of 20BaO·10Fe2O3·xMoO3·(70???x)V2O5 glasses (x?=?20–50) showed paramagnetic doublet peaks due to distorted FeIIIO6 octahedra with δ’s of 0.40–0.41 (±?0.01) mm s?1. These results evidently show a composition-dependent change of the 3D-skeleton structure from “vanadate glass” phase, composed of distorted VO4 tetrahedra and VO5 pyramids, to “molybdate glass” composed of distorted MoO6 octahedra. After isothermal annealing at 500 °C for 60 min, Mössbauer spectra also showed a marked decrease in the quadrupole splitting (Δ) of FeIII from 0.70 to 0.77 to 0.58–0.62 (±?0.02) mm s?1, which proved “structural relaxation” of distorted VO4 tetrahedra which were randomly connected to FeO4, VO5, MoO6, FeO6 and MoO4 units by sharing corner oxygen atoms or edges. DC-conductivity (σ) of barium iron vanadate glass (x?=?0) measured at room temperature was 3.2?×?10?6 S cm?1, which increased to 3.4?×?10?1 S cm?1 after the annealing at 500 °C for 60 min. The σ’s of as-cast molybdovanadate glasses with x’s of 20–50 were ca. 1.1?×?10?7 or 1.2?×?10?7S cm?1, which increased to 2.1?×?10?2 (x?=?20), 6.7?×?10?3 (x?=?35) and 1.9?×?10?4 S cm?1 (x?=?50) after the annealing at 500 °C for 60 min. It was concluded that the structural relaxation of distorted VO4 tetrahedra was directly related to the marked increase in the σ, as generally observed in several vanadate glasses.  相似文献   

18.
The microwave dielectric properties of Ba2MgWO6 ceramics were investigated with a view to the use of such ceramics in mobile communication. Ba2MgWO6 ceramics were prepared using the conventional solid-state method with various sintering temperatures. Dielectric constants (? r ) of 16.8–18.2 and unloaded quality factor (Q u  × f) of 7000–118,200 GHz were obtained at sintering temperatures in the range 1450–1650 °C for 2 h. A maximum apparent density of 6.76 g/cm3 was obtained for Ba2MgWO6 ceramic, sintered at 1650 °C for 2 h. A dielectric constant (? r ) of 18.4, an unloaded quality factor (Q u  × f) of 118,200 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?34 ppm/°C were obtained when Ba2MgWO6 ceramics were sintered at 1650 °C for 2 h.  相似文献   

19.
(1 ? x)(K0.5Na0.5)NbO3xBi(Mg0.75Mo0.25)O3 [(1 ? x)KNN–xBMM] (x?=?0.005, 0.01, 0.02) ceramics were prepared via a solid-state reaction method. X-ray diffraction patterns (XRD) and Raman spectrum showed that a solid solution was formed between the BMM and KNN, which improved the electrical properties of KNN. With increasing the BMM content, the grain firstly increased and then decreased. When x?=?0.01, the ceramics exhibited the optimized microstructure, indicating that there exits an optimal doping component. Temperature dependence of relative permittivity also increases firstly and then decreases. The relative permittivity (εr) of ~?1418 in stabilization zone, εmax?~?4861 at the Curie temperature T C ~ 394 °C, good temperature stability ?ε/ε123 °C?≤?±?15% from 123 °C to 348 °C, and the dielectric loss tanδ?≤?0.036 from 109 to 348 °C were obtained for 0.99KNN-0.01BMM ceramics. Conductivity behavior of the (1 ? x)KNN–xBMM was investigated as a function of temperature from 420 to 520 °C and frequency from 40 to 106 Hz, showing that the basic mechanisms of conduction and relaxation processes were thermally activated, and oxygen vacancies were the possible ionic charge transport carriers at higher temperatures.  相似文献   

20.
A novel CaO–2CuO–Nb2O5 (CCN) ceramic composite was prepared by the solid-state reaction method in the temperature range of 810–890 °C. Typically, the CCN sintered at 870 °C exhibited the excellent microwave properties of ε r ?=?15.7, Q?×?f?=?28,700 GHz, τ f = ? 38.4 ppm/°C. The τ f of CCN was turned to be near zero by adding TiO2, while the ε r increased slightly and the Q?×?f decreased. The 0.91CCN–0.09TiO2 ceramic sintered at 920 °C showed modified properties of ε r ?=?16.9, Q?×?f?=?21,500 GHz, τ f = ? 1.6 ppm/°C, which shows potential in LTCC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号