首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Microstructural and surface morphological studies of Co (2.5%) doped ZnS thin films deposited at different substrate temperatures (TS) of 200, 400 and 600 °C by means of pulsed laser deposition are presented. The deposited films are in wurtzite-hexagonal crystal structure as confirmed by X-ray diffraction and Raman spectroscopy techniques. The films deposited at higher TS show columnar morphology, as evidence by transmission electron microscopy measurements. Images of the surface topography have been taken by atomic force microscopy (AFM) for the film deposited at different TS. The film deposited at TS of 200 °C shows cone-like structures while deposited at TS of 400 and 600 °C show columnar structures. A fractal analysis has been performed on AFM images to understand the microstructure and surface morphology of thin film at different TS. Fractal analysis also reveals the morphological changes in the film with increasing TS. The observed ferromagnetism is correlated with columnar growth of the film which can be used as diluted magnetic semiconductor for spintronic applications.  相似文献   

2.
Fabrication of ZnS thin films having similar stoichiometry at different substrate temperatures (TS) e.g. 200 °C, 300 °C and 400 °C by means of RF magnetron sputtering method is presented. The films grown at TS of 200 °C are in cubic zinc-blende phase and textured along (111) plane. The films deposited at TS of 300 °C and 400 °C are in hexagonal wurtzite phase. The surface roughness and grain size of the films increase with increasing TS. The ultra-violet and visible absorption studies show that the bandgap of films can be tailored by varying TS, taking advantage of the structural transformation.  相似文献   

3.
Nanocrystalline thin films of zinc sulphide were prepared on glass substrate at various deposition temperatures by thermal evaporation technique. The variation of the structural and optical properties of films deposited at various substrate temperatures was investigated in detailed. X-ray diffraction spectra showed that films deposited at 300 and 400 °C are polycrystalline in nature having cubic and both cubic and wurtzite structure, respectively. However, film deposited at temperature of 200 °C was found to be amorphous in nature. The ultra-violet and visible absorption studies showed that the band gap of films increases with increase in deposition temperatures. Photoluminescence spectra displayed emission near 396 and 444 nm, which arises due to zinc vacancies and sulphur vacancies, respectively and has been correlated to phase transition of the films.  相似文献   

4.
Copper bismuth sulfide thin films were deposited at 200 °C, 300 °C, 400 °C and 500 °C on the glass substrates by electron beam evaporation method. X-ray diffraction study revealed that the copper bismuth sulfide films of single and mixed phases were formed as a function of substrate temperatures. Substrate temperature of 300 °C and 400 °C formed single phase Cu4Bi4S9 and Cu4Bi5S10 films respectively whereas substrate temperature of 500 °C formed mixed phases of Cu4Bi4S9 and Cu4Bi5S10 film. Crystallite size, dislocation density and microstrain of the films were modified by the various substrate temperatures. Surface morphology of the film Cu4Bi5S10 deposited at 400 °C examined by scanning electron microscopy showed the distribution of spherical shaped particles on the film surface. The presence of copper, bismuth and sulfur elements in the deposited films was confirmed using energy dispersive spectral studies. The calculated direct optical band gap energy of the films deposited at different substrate temperature varied from 1.47 to 1.64 eV and the absorption coefficient is in the order of 106 cm?1.  相似文献   

5.
《Optical Materials》2005,27(3):419-423
Nanocrystalline ZnS films have been prepared by sulfidation of the reactive magnetron sputtered ZnO films. The structure, composition and optical properties of the sulfurized ZnO films as a function of the sulfidation temperature (TS) have been systematically studied. It is found that at TS  400 °C ZnO is completely converted to ZnS with the hexagonal structure. The ZnS films have a strongly (0 0 2) preferred orientation and an optical transparency of about 80% in the visible region. In addition, at TS < 444.6 °C (boiling point of sulfur), some residual sulfur decomposed from H2S gas can adhere to the sulfurized film surface while at TS = 580 °C a S/Zn ratio much higher than the ideal stoichiometric proportion of ZnS is obtained for the ZnS films. ZnS films with a minimum XRD FWHM value of 0.165° and a good S/Zn ratio of 0.99 are obtained at a temperature of 500 °C indicating the ZnS films to be suitable for use in the thin film solar cells.  相似文献   

6.
ZnS thin films with the hexagonal structure have been produced by sulfurizing sputter deposited Zn in sulfur vapor for 1 h. These films have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES) and UV-VIS transmission spectra. It is found that at the sulfidation temperature (TS) of 400 °C a little and partial Zn can be transformed to ZnS. At TS = 500 °C, the total conversion of Zn in sulfur vapor can take place and form ZnS with a c-axis preferred orientation. The Zn-to-ZnS conversion is kinetically a reactive diffusion process. Also the ZnS thin film has much greater size of grains than the as-deposited Zn film, due to ZnS recrystallization and growth in sulfur vapor. Residual sulfur existing on the surface of ZnS grains leads to the poor optical transparency and great broadening of absorbing edge in the optical transmittance. However, ZnS thin film prepared by gradient sulfidation exhibits the improved optical transmittance, with a band-gap energy of 3.64 eV.  相似文献   

7.
Indium tin oxide (ITO) thin films with the thickness of 300 nm were deposited on quartz substrates via electron beam evaporation. Five samples were post-annealed in air atmosphere for 10 min at five selected temperature points from 200 to 600 °C, respectively. X-ray diffractometer, Hall measurement system and UV–Vis spectrophotometer were adopted to characterize the ITO thin films. Influence of thermal annealing in air atmosphere on microstructure was investigated. Furthermore, the correlation between microstructure and electrical, optical properties of ITO thin films was discussed in detail. All of the ITO thin films had a polycrystalline structure and a preferred orientation of (222), no matter annealed or not. The intensity ratio of I(222)/I(440) initially increased and then decreased, it reached the maximum of 7.37 after annealed at 400 °C for 10 min. The lattice expansion evidently reduced after annealed at 300 °C or even higher temperature. The variation of mean grain size was minor during thermal annealing process regardless of annealing temperature. The carrier concentration is predominant in electrical conductivity, and it is dependent on the activation of donors and the density of oxygen vacancies. Hall mobility is strongly dependent on the mean grain size, lattice distortion and defect density. The optical transmittance is influenced by the density of oxygen vacancies and the consistency of grain orientations.  相似文献   

8.
Zn/ZnO layers were deposited on SiO2/Si substrate by magnetron sputtering at room temperature, and then these layers were annealed at various temperatures from 200 to 400 °C in nitrogen atmosphere for 1 min. The structural and electrical properties of the Zn/ZnO layers before and after annealing are systematically investigated by X-ray diffraction, scanning electron microscopy, current–voltage measurement system, and Auger electron spectroscopy. Current–voltage measurements show that the Zn/ZnO layers exhibit an Ohmic contact behavior. It is shown that, initially, the specific contact resistivity decreases with the increase of the annealing temperature and reaches a minimum value of 9.76 × 10?5 Ω cm2 at an annealing temperature of 300 °C. However, with a further increase of the annealing temperature, the Ohmic contact behavior degrades. This phenomenon can be explained by considering the diffusion of zinc interstitials and oxygen vacancies. It is also shown that Zn-rich ZnO thin films can be obtained by annealing Zn on the surface of ZnO film and that good Ohmic contact between Zn and ZnO layers can be observed when the annealing temperature was 300 °C.  相似文献   

9.
Copper chalcogenide materials are interesting for multiple applications due to the feasibility of suiting their optical absorption and electrical conduction by the creation of copper vacancies. Here, Cu x S and Cu x Se nanocrystalline films with p-type conductivity have been obtained by heating evaporated copper layers of various thicknesses with elemental sulfur or selenium, at temperatures ranging from 250 to 400 °C. These preparation parameters determine the composition and the crystalline structure of the samples, which in turn control their morphology, optical and electrical properties. Thus, the surface roughness increases with the mean crystallite size, whereas the hole concentration increases as the copper atomic proportion (or x value) decreases. Owing to the high carrier densities achieved, around 1022 cm?3, the samples show a metallic behavior with plasmonic absorption in the near infrared and electrical transport dominated by phonon scattering. Apart from such common behavior, some differences have been established between the sulfide and selenide films. One is the superior thermal stability of hexagonal CuS, present in all the temperature range, with respect to hexagonal CuSe, which evolves to cubic Cu1.8Se above 300 °C. Other is about the bandgap, wider for the sulfide than selenide samples.  相似文献   

10.
In this study, thin films of molybdenum oxide were prepared by spray pyrolysis technique on glass substrates. The influence of substrate temperature on their crystallographic structure, surface morphology, and optical properties was studied. The formation of a MoO3 film on the substrate was confirmed through XRD analysis. Furthermore, the presence of the two phases α and β in each of the films was evident. The percentage of phase α varied from 55 % for the film deposited at 200 °C up to 97 % for the film deposited at 400 °C. According to SEM images, MoO3 films have a sponge-type structure on the order of nanometers. Both the optical gap and the refraction index strongly depend on substrate temperature. The optical gap decreases from 3.63 eV for the film deposited at 150 °C up to 3.30 eV for the one prepared at 400 °C. On the contrary, the refraction index measured at 800 nm increases from 1.54 up to 1.61 for the films prepared at 150 °C and 400 °C, respectively.  相似文献   

11.
The effect of substrate temperature (Ts) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The Ts was varied from 300 °C to 500 °C, with a step of 50 °C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 °C and 500 °C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in Ts. The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 °C is the optimal Ts. Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing Ts until 400 °C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing Ts. The optical band gap calculated from the absorption edge showed that the films deposited with Ts of 300 °C and 350 °C possess higher values than those deposited at higher Ts.  相似文献   

12.

This paper reports the synthesis and characterization of Cu2ZnSnS4 (CZTS) absorber films, prepared by a two-step electrodeposition of a ZnS (zinc sulfide) binary and a CZT (copper, zinc and tin) ternary precursors on Mo/Ti/Si substrates. The as-electrodeposited ZnS/CZT and CZT/ZnS stacks were thermally treated in a tubular furnace in sulfur environment at 550 °C. The role of the ZnS buffer layer is to provide a zinc and sulfur reservoir, needed to complete the formation of kesterite phase. X-ray diffraction and Raman analyses revealed the formation of the CZTS phase. The surface morphology and chemical composition of the films were studied using a scanning electron microscope. The bandgap values inferred from diffuse reflectance data, are discussed with respect to the stoichiometry which is considerably affected by the order of the stacks. Room-temperature photoluminescence of the CZT/ZnS sample showed a board PL band of 1.51 eV. It was found that the film with a ZnS layer on top is preferred for the formation of a Zn-rich single CZTS phase.

  相似文献   

13.
Si doped ZnO (SZO) films with various Si concentrations were deposited by atomic layer deposition at 300 °C using triethyzinc, tris(dimethylamino)silane and H2O2 as the precursors. The influences of Si doping concentration on structural, electrical and optical properties of ZnO films have been investigated. All the films exhibited a highly preferential c-axis orientation. A minimum resistivity of 9.2 × 10?4 Ω cm, with a carrier concentration of 4.3 × 1020 cm?3 and a Hall mobility of 15.8 cm2/Vs, was obtained for SZO film prepared with the Si concentration of 2.1 at%. The increase of conductivity with Si doping was attributed to the presence of Si in +3 valence state acting as donor in ZnO and the increases of oxygen vacancies with Si concentration as proven by XPS measurements. The optical bandgap of SZO films initially increased from 3.25 to 3.55 eV with increasing of Si concentration to 2.1 at%, then decreased with further increase of Si concentration. The blue shift of band gap of SZO films with increasing carrier concentration can be explained by the Burstein-Moss (B-M) effects.  相似文献   

14.
ZnS thin films were prepared by spray pyrolysis technique using aqueous of zinc chloride and thiourea at molar ratio of 1:1, 1:2, and 2:1. The depositions were carried out on substrates heated from 400 to 520 °C The films were then annealed under sulphur atmosphere for 90 min at 450 and 550 °C. The crystallites exhibit preferential orientation along the [002]α or [111]β directions. The films were characterized by XRD and SEM. The structure and morphology of sprayed films are controlled by both, the substrate temperature and the precursors molar ratio in the solution. The values of optical bandgap have been determined from the absorption spectra.  相似文献   

15.
Indium tin oxide (ITO) thin films were deposited on quartz substrates by radio frequency (RF) sputtering with different RF power (100–250 W) using the powder target at room temperature. The effect of sputtering power on their structural, electrical and optical properties was systematically investigated. The intensity of (400) orientation clearly increases with the sputtering power increases, although the films have (222) preferred orientation. Increasing sputtering power is benefit for lower resistivity and transmittance. The films were annealed at different temperature (500–800 °C), then we explored the relationship between their electro-optical and structural properties and temperature. It has been observed that the annealed films tend to have (400) orientation and then show the lower resistivity and transmittance. The ITO thin film prepared by RF sputtering using powder target at 700 °C annealing temperature and 200 W sputtering power has the resistivity of 2.08 × 10?4 Ω cm and the transmittance of 83.2 %, which specializes for the transparent conductive layers.  相似文献   

16.
GaN films have been deposited at 100–400 °C substrate temperature on Si (100) and sapphire (0001) substrates by RF reactive sputtering in an (Ar + N2) atmosphere. A (Ga + GaN) cermet target for sputtering was made by hot pressing the mixed powders of metallic Ga and ceramic GaN. The effects of substrate temperature on the GaN formation and its properties were investigated. The diffraction results showed that GaN films with a preferential (10–10) growth plane had a wurtzite crystalline structure. GaN films became smoother at higher substrate temperature. The Hall effect measurements showed the electron concentration and mobility were 1.04 × 1018 cm?3 and 7.1 cm2 V?1 s?1, respectively, for GaN deposited at 400 °C. GaN films were tested for its thermal stability at 900 °C in the N2 atmosphere. Electrical properties slightly degraded after annealing. The smaller bandgap of ~3.0 eV is explained in terms of intrinsic defects and lattice distortion.  相似文献   

17.
Influence of filament temperature (TFil) on the structural, morphology, optical and electrical properties of silicon carbide (SiC) films deposited by using hot wire chemical vapor deposition technique has been investigated. Characterization of these films by low angle XRD, Raman scattering, XPS and TEM revealed the multiphase structure SiC films consisting of 3C–SiC and graphide oxide embedded in amorphous matrix. FTIR spectroscopy analysis show an increase in Si–C, Si–H, and C–H bond densities and decrease in hydrogen content with increase in TFil. The C–H bond density was found higher than the of Si–H and Si–C bond densities suggesting that H preferably get attached to C than Si. AFM investigations show decrease in rms surface roughness and grain size with increase in TFil. SEM studies show that films deposited at low TFil has spherulites-like morphology while at high TFil has cauliflower-like structure. Band gap values ETauc and E04 increases from 1.76 to 2.10 eV and from 1.80 to 2.21 eV respectively, when TFil was increased from 1500 to 2000 °C. These result show increase in band tail width (E04–ETauc) of multiphase SiC films. Electrical properties revealed that σDark increases from ~7.87 × 10?10 to 1.54 × 10?5 S/cm and Eact decreases from 0.67 to 0.41 eV, which implies possible increase in unintentional doping of oxygen or nitrogen due to improved crystallinity and Si–C bond density with increase in TFil. The deposition rate for the films was found moderately high (21 < rdep < 30 Å/s) over the entire range of TFil studied.  相似文献   

18.
A simple and rapid process for deposition of high refractive index films of ZnS/PVP nanocomposite (NC) is described. Precursor films are dip-coated on glass/quartz substrates from methanolic solution of polyvinylpyrrolidone (PVP) containing Zn+2–thiourea (TU) complex. ZnS/PVP nanocomposite films are produced by heating the solid precursor at 200°C for 10 min in air. Heat treatment converts the Zn+2–TU complex to ZnS by thermolysis in situ PVP. The transmission spectra of the films (typically 700 nm thickness) in the wavelength range of 200–1000 nm showed an absorption edge near 300 nm due to ZnS nanoparticles and high transmission of 97% beyond 400 nm. ZnS nanoparticles are uniformly dispersed in PVP matrix having sizes of about 3–4 nm. For ZnS loading of 45% by weight, the refractive index of ZnS/PVP is 1.65 which is in between that of PVP (1.48) and ZnS (2.36). Fourier Transform Infrared (FTIR) spectroscopy of the composite showed that there is a strong interaction between ZnS nanocrystals and PVP. The root mean square (RMS) roughness of the films is about 3 nm as determined by atomic force microscope (AFM).  相似文献   

19.
Boron doped CdS films have been deposited by spray pyrolysis method onto glass substrate temperature in the range of 350–450 °C. And the effect of substrate temperature (T s) on the structural, electrical and optical properties of the films were studied. The structural properties of boron doped CdS films have been investigated by (XRD) X-ray diffraction techniques. The X-ray diffraction spectra showed that boron doped CdS films are polycrystalline and have a hexagonal (wurtzite) structure. By using SEM analysis, the surface morphology of the films was observed as an effect of the variation of substrate temperature. The substrate temperature is directly related with the shift detected in the band gap values derived from optical of parameters and the direct band gap values were found to be in the region of 2.08–2.44 eV. The electrical studies showed that the film deposited at the substrate temperature 400 °C had high carrier concentration and Hall mobility and minimum resistivity. This resistivity value decreased with increase in temperature up to 400 °C indicating the semiconducting nature of B- doped CdS films. The lattice parameter, grain size, microstrain and dislocation densities were calculated and correlated with the substrate temperature (T s ).  相似文献   

20.
Tin oxide thin films were deposited on glass substrate with 100 nm thickness of Sn, which was coated by magnetron sputtering followed by thermal oxidation at different temperatures. The effect of oxidation temperature on the optical and structural properties of SnO2 films were investigated. Higher transmittance, lower absorption and lesser structural defects were obtained at higher temperatures. Optical bandgap increases with temperature, while the Urbach energy showed reduction. The X-ray diffraction studies showed that at lower temperatures (300, 350 °C), a combined phase of SnO and SnO2 was obtained, while at higher temperatures (400, 450 °C), a nearly polycrystalline SnO2 film with preferred orientation of (101) was produced. Annealing of the samples at 500–650 °C caused the transmittance and optical bandgap increased, while the absorption decreased. Reduction of the Urbach energy after annealing could be attributed to the reduction of the degree of thermal disorder. AFM studies showed that although the thin films were annealed under similar condition, their roughness was not similar because of different oxidation temperatures, which means that initial oxidation temperature played an important role on surface uniformity of SnO2 thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号