首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Nanoparticles of sodium lanthanum (III) fluoride-doped and co-doped with Eu3+/Tb3+ were prepared by the hydrothermal method using citric acid as structure-directing agent. Structural aspects and optical properties of synthesized nanoparticles were studied by powder X-ray diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectra (EDS), particle size by dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectrum and photoluminescence (PL) techniques. Nanoparticles consist of well-crystallized hexagonal phase and the average crystallite size for undoped and doped-NaLaF4 nanoparticles are in the range of 20–22 nm. TEM images show that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Down- conversion (DC) luminescent properties of doped NaLaF4 were also investigated and impact of co-doping has been explored.  相似文献   

2.
Structural, morphological, optical and electrical investigations of pure and Al-doped lead sulfide (PbS) nanoparticles hybrid composite was synthesized by simple chemical route. The detail analysis of the nanoparticle morphology of hybrid composites through optical investigation, phase purity and crystalline size had been characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet spectroscopy (UV), photoluminescence (PL). The lower angle XRD results confirmed that the phase purity and average crystalline size of the pure and Al doped PbS nanoparticles were determined by using the Debye–Scherrer’s formula. The average grain sizes of the pure and the Al-doped PbS nanoparticles were calculated and found to be 22 and 16 nm respectively. Surface morphology analysis was carried out by using SEM and TEM analysis. The surface morphology of pure and Al doped PbS nanoparticles is without any pinholes or cracks and hence they appear to be densely packed with spherical shaped grains. The optical properties of pure and Al-doped PbS analyzed using UV–Vis. absorption spectroscopy and Photoluminiscence (PL) spectra. The band gap values for the pure and the Al-doped PbS nanoparticles were found to be 1.94 and 2.04 eV respectively. The dielectric properties of the Al-doped PbS nanoparticle composites typical response e.g. dielectric constant, dielectric loss, and AC conductivity were analyzed at various frequencies and temperatures.  相似文献   

3.
ZnS nanoparticles were successfully synthesized by reflux under an alkaline medium. The nanoparticles were characterized by using X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties of ZnS nanoparticles were examined by photoluminescence (PL) spectrum. The result shows that the as-synthesized ZnS nanoparticles had a cubic phase. SEM image shows that ZnS nanoparticles are basically in spherical shape and are homogeneous. The particle size was found to be in the range of 18 nm.  相似文献   

4.
Nanocomposite films of CdS nanoparticles within PVP/PVA blend were prepared. The prepared films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Ultraviolet–visible spectroscopy (UV–vis), transmission electron microscopy (TEM) and photoluminescence (PL) spectra. The amount of Cd+ used strongly influenced the size of the CdS nanoparticles, which was confirmed by XRD, UV–vis absorption spectra, PL emission spectra and TEM images. Smaller sized CdS nanoparticles were formed in higher content of cadmium. The results of XRD indicate that CdS nanoparticles were formed with hexagonal phase in the polymeric matrix. PL and UV–vis spectra reveal that nanocomposite films shows quantum confinement effect. Optical band gap and particle size were calculated and is in agreement with the results obtained from TEM data. The direct energy band gap was increased up to 2.86 eV.  相似文献   

5.
AgInS2 nanoparticles have been synthesized via a facile one-step process using AgNO3, thiosemicarbazid (TSC) and InCl3·4H2O as starting reagents from propylene glycol solution. The effects of concentration of precursors, reaction time and type of sulfur sources on the morphology and particle size were also studied. X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), scanning electron microscope (SEM), transmission electron microscope (TEM), ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence (PL) spectroscopy were used to characterize the obtained products.  相似文献   

6.
[Bis(salicylidene)nickel(II)] was used as a precursor to prepare nickel sulfides nanoparticles of average size 20 nm by a chemical process in oleylamine. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis) and photoluminescence (PL) spectroscopy. Magnetization measurement indicates that both of the α-NiS and Ni3S4 nanoparticles show pramagnetism due to the size effect.  相似文献   

7.
Well-crystallized ZnO nanowires have been successfully synthesized on NiCl2-coated Si substrates via a carbon thermal reduction deposition process. The pre-deposited Ni nanoparticles by dipping the substrates into NiCl2 solution can promote the formation of ZnO nuclei. The as-synthesized nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectrum. The results demonstrate that the as-fabricated nanowires with about 60 nm in diameter and several tens of micrometers in length are preferentially arranged along [0001] direction with (0002) as the dominate surface. Room temperature PL spectrum illustrates that the ZnO nanowires exist a UV emission peak and a green emission peak, and the peak centers locate at 387 and 510 nm. Finally, the growth mechanism of the nanowires is briefly discussed.  相似文献   

8.
Green synthesis of silver nanoparticles (AgNPs) using Shivlingi (Bryonia laciniosa) seed extract was carried out. Characterisation of synthesised nanoparticles was accomplished through the optical absorption and photoluminescence spectrum, X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The XRD analysis further confirmed the size of nanoparticles ∼15 nm. TEM images revealed homogeneous spherical ∼10 nm Bryonia extract capped AgNPs. The biological studies indicated that both Bryonia seed extract and the nanoparticles lack anti‐microbial activity; however, the nanoparticles had better cytotoxicity and total antioxidant activity. The Lethal concentration (LC)50 value of water extract and the nanoparticles were found to be 1091 and 592 μg/ml, respectively. The lower LC50 of nanoparticles indicates that it is more cytotoxic than the crude extract. The results indicate that the Bryonia seed is safe to be used as a medicine and the formation of their nanoparticle has further enriched the chemical reactivity, energy absorption and biological mobility.Inspec keywords: silver, nanoparticles, nanomedicine, particle size, microorganisms, cellular biophysics, nanofabrication, photoluminescence, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, Raman spectra, antibacterial activity, biochemistryOther keywords: green synthesis, biological studies, Shivlingi seed extraction, Bryonia laciniosa, silver nanoparticles, optical absorption, photoluminescence spectrum, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, SEM, Fourier transform infrared spectroscopy, Raman spectroscopy, XRD analysis, nanoparticle size, TEM images, homogeneous spherical images, antioxidant activity, water extraction, chemical reactivity, energy absorption, biological mobility, Ag  相似文献   

9.
Polyaniline nanofibre–tin oxide (PAni-SnO2) nanocomposites are synthesized and mixed with polyvinyl alcohol (PVA) as stabilizer to cast free-standing films. Composite films are characterized by X-ray diffraction studies (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence spectroscopy (PL) and UV-visible spectroscopy. XRD confirms the formation of PAni nanofibre–SnO2 nanocomposite. From TEM images, diameter of the polyaniline nanofibre and SnO2 nanoparticles in the PAni-SnO2 nanocomposite are found to be 20–60 nm. SEM results show fibrous morphology of the PAni nanofibre and spherical morphology of polyaniline-SnO2 composites. The nanocomposites exhibit high relative photoluminescence intensity in violet as well as green–yellow region of visible spectrum. From electrical conductivity measurement, it is confirmed that PAni nanofibre–SnO2 nanocomposite follows Mott’s one-dimensional variable range hopping (VRH) model.  相似文献   

10.
In the present work, silver and sulphur codoped TiO2 (Ag–S/TiO2) photocatalysts were effectively prepared by sol–gel technique. The prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray analysis (EDX), Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance UV–Vis spectroscopy (UV-DRS) and photoluminescence (PL). The XRD patterns consisted of anatase crystalline phases and the particle size and shape of the prepared samples were observed by SEM and HR-TEM. The presence of doping ions was confirmed by EDX analysis, the decreased band-gap energy of Ag–S codoped TiO2 nanoparticles was investigated by UV-DRS. The decreased in the intensity of Ag–S codoped TiO2 was absorbed due to the lower separation of electron–hole pairs were confirmed by PL spectrum. The Ag–S codoped TiO2 showed higher photocatalytic activity than pure and single-doped TiO2 in the photodegradation of methylene blue (MB) aqueous solution under visible light irradiation. The given work was a good model to associate the considering of the synergistic effect of metal and non-metal codoped TiO2 in the photocatalysis and photo electrochemistry.  相似文献   

11.
SnO2 nanobelts have been synthesized by water-assisted growth at 850 °C using high pure Sn powders as the source materials. The as-synthesized products were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersed X-ray spectroscopy (EDX), infrared spectrum (IR) and room-temperature photoluminescence (PL) spectrum. XRD pattern of the sample is quite in accord with the standard pattern of the tetragonal rutile SnO2; SEM and TEM images show that the uniform single-crystalline SnO2 nanobelts are about tens of micrometers in length, 70-100 nm in width and 5-8 nm in thickness, and is smooth in surface. The special IR and PL properties were also detected by IR and PL testing. The growth mechanisms and special properties relative to the SnO2 nanostructures are discussed.  相似文献   

12.
Vanadium-doped zinc oxide nanoparticles have been synthesized by sol-gel method. In our approach the water for hydrolysis used in the synthesis of nanopowder was slowly released followed by a thermal drying in ethyl alcohol at 250 °C. The obtained nanopowder was characterized by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range. From photoluminescence excitation (PLE) the energy position of the obtained PL band depends on the excitation wavelength and this PL band can be also observed under visible excitations. This result is very promising for visible photo catalysis applications, which was confirmed by methylene blue photo-degradation using visible lamp as a light source.  相似文献   

13.
Yttrium oxide (yttria) nanoparticles were successfully synthesized by co-precipitation method. As-synthesized and annealed powders were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), UV-visible (UV-vis), photoluminescence (PL) spectra and Fourier transform infrared spectrometer (FTIR). The XRD results show that the as-prepared sample has mixed phase of Y(OH)3 and yttria (Y2O3). However, cubic yttrium oxide phase alone is found for annealed samples. The strain values are calculated from Williamson-Hall (W-H) plot for annealed samples. SEM and TEM micrographs show that the samples are composed of aggregated nanoparticles with different shapes and sizes. From the UV-vis spectra, it is found that the position of the absorption peak is shifted towards the lower wavelength side when particle size decreases. In the PL spectra, the broad emission bands are observed between 340 and 380 nm and the presence of metal oxide is confirmed by FTIR spectra.  相似文献   

14.
Ni nanoparticles with different mean diameters of 15-83 nm were synthesized by solution reduction process. The size of Ni nanoparticles can be controlled by varying the concentration of NiCl2·6H2O and synthesis temperature. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS). Results show that the synthesized particles are single-phased Ni with a face-centered cubic crystal structure. Magnetic measurements indicate that Ni nanoparticles are ferromagnetic. The lattice constants and coercivities of the samples are size-dependent.  相似文献   

15.
Synthesis and characterization of copper nanoparticles   总被引:1,自引:0,他引:1  
Reduction of copper salt by sodium citrate/SFS and myristic acid/SFS leads to phase pure Cu nanoparticles. However, a similar reaction with hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in polymer afforded only a mixture of Cu2O and Cu. Copper nanoparticles so-prepared were characterized by UV-Visible spectroscopy, X-ray diffraction measurements (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Freshly prepared solutions showed an absorption band at about 600 nm due to surface plasmon resonance (SPR). XRD analysis revealed all relevant Bragg's reflection for fcc crystal structure of copper metal. The particle size by use of Scherrer's equation is calculated to be about 30 nm. TEM showed nearly uniform distribution of the particles in PVA.  相似文献   

16.
Ag2S–AgInS2 nanocomposites, with the aid of [Ag(HSal)] and InCl3 as starting reagents, have been successfully synthesized by a microwave process from propylene glycol solution. Besides, the effects of preparation parameters such as irradiation time, solvents and sulfur source on the morphology and particle size of products were studied by SEM images. The synthesis procedure is novel, simple and uses less toxic reagents. The prepared Ag2S–AgInS2 nanostructures were characterized extensively by means of X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared (IR) spectrum, photoluminescence (PL) spectroscopy. The fill factor (FF), open circuit voltage (Voc), and short circuit current (Isc) were obtained by IV characterization.  相似文献   

17.
PrF3 hollow nanoparticles were synthesized by the microwave-assisted heating hydrothermal treatment of the corresponding colloidal rare earth fluorides precipitates. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The TEM imaging showed that the PrF3 nanoparticles prepared in this way had hollow sphere-like morphology with the mean particle size of about 31 nm. XRD showed that the PrF3 hollow nanoparticles had high purity and high crystallinity.  相似文献   

18.
In this paper, SiO2–Au–Cu2O core/shell/shell nanoparticles were synthesized by reducing gold chloride on 3-amino-propyl-triethoxysilane molecules attached silica nanoparticle cores for several stages. Cu2O nanoparticles were synthesized readily with the size of 4–5 nm using a simple route of sol–gel method Then, they were clung to the surface of Au seeds. The morphology of the resultant particles was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Transmission electron microscopy images demonstrate growth of monodispersed gold seeds and Cu2O nanoparticles in narrow size up to 10 nm and 5 nm, respectively. The presence of gold and Cu2O coating was confirmed by X-ray diffraction, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. Absorption spectroscopy shows considerably 40 nm blue shift in absorption edge for SiO2–Au–Cu2O nanostructure rather than SiO2–Au core/shell nanoparticles.  相似文献   

19.
This report describes the novel synthesis of cobalt oxide (Co3O4) nanoparticles from corresponding metal benzoate dihydrazinate complex as a precursor followed by thermal decomposition. Transmission electron microscopy (TEM) revealed nearly uniform nanoparticles with an average particle size of around 20 nm. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) demonstrated that the nanoparticles were composed of pure cubic phase polycrystalline Co3O4. The nanoparticles were also confirmed by Raman spectroscopy. In principle, this simple and inexpensive synthetic procedure can be employed to prepare other transition metal oxide nanoparticles.  相似文献   

20.
Simple sol-gel techniques are used to prepare thin films of a high dielectric constant perovskite CaCu3Ti4O12, containing different amounts of metallic silver nanoparticles. The formations of the silver nanoparticles are verified by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical absorption studies. The dielectric properties are found to be significantly affected by the presence of the silver nanoparticles. A maximum in the dielectric constant is observed at an intermediate metal particle concentration. This is explained in terms of the polarization at the particle-dielectric interface and the internal barrier layer capacitor effect. The optical absorption spectrum is compared with Mie theory in electrodynamics for the optical absorption of small particles to extract the particle size of the silver particle. Non-uniform distributions of Ag particles through the thickness of the thin films are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号