首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pure and Zr-substituted CaCu3(Ti1−x Zr x )4O12 (x = 0, 0.01, 0.02, 0.03) ceramics were prepared by the Pechini method. X-ray powder diffraction analysis indicated the formation of single-phase compound, and all the diffraction peaks were completely indexed by the body-centered cubic perovskite-related structure. The effects of Zr4+ ion substituting partially Ti4+ ion on the dielectric properties were investigated in frequency range between 100 Hz and 1 GHz. The low frequency (f ≤ 105 Hz) dielectric constant decreases with Zr substitution and the high frequency (f ≥ 107 Hz) dielectric constant is unchanged. Interestingly, a low-frequency relaxation was observed at room temperature through Zr substitution. The observed dielectric properties in Zr-substituted samples were discussed using the internal barrier layer capacitor model. A corresponding equivalent circuit was adopted to explain the dielectric dispersion. The characteristic frequency of low-frequency relaxation rises due to the decrease of the resistivity of grain boundary with Zr substitution, which is likely responsible for the large low-frequency response at room temperature.  相似文献   

2.
Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics were investigated via an improved dielectric spectroscopy. A new low-frequency dielectric relaxation, which was assigned to space charge polarization, was found shifting towards higher frequency with increasing bias voltage in the improved spectra. It was suggested that the Schottky barrier at grain boundary was lowered under dc bias resulting in higher possibility for carriers to migrate. Therefore, the relaxation time was decreased, which was in accordance with rightward shift of this relaxation under increased dc bias. In addition, dependence of the widely reported high-frequency relaxation (>?105 Hz) and middle-frequency relaxation (103–105 Hz) on bias voltage was also discussed. Permittivity contributed by either high-frequency or middle-frequency relaxation presented inverse dependence on dc bias. Discrepancy on barrier parameters was obtained assuming both of them physically correlated with the barrier at grain boundary.  相似文献   

3.
Ca1−3x/2Nd x Cu3Ti4O12 (x = 0, 0.1, 0.2) ceramics were prepared by a solid state reaction process, and single-phased structures were obtained for all the compositions. The dielectric characteristics of pure and Nd-substituted CaCu3Ti4O12 ceramics were investigated together with the microstructures. The mixed-valent structures of Cu+/Cu2+ and Ti3+/Ti4+ in the present ceramics were confirmed by X-ray photoelectron analysis. The dielectric relaxation in the low temperature range was examined in detail and the variation of dielectric constant and dielectric loss was attributed to the modification mixed-valent structures.  相似文献   

4.
5.
The structure–property relationship of the CaCu3Ti4O12 ceramics processed via conventional solid-state method was studied in terms of the different processing conditions. X-ray diffraction patterns of the tenorite CuO and cuprite Cu2O secondary phases found on the unpolished and polished surfaces of CaCu3Ti4O12 were explained by the reduction/reoxidation reaction as a function of sintering time. Based on the microstructures, grain growth of CaCu3Ti4O12 continued from 0.5 to 4 h sintering while the further growth was limited to the small-sized grains after 8 h sintering. Also, WDS data indicated the Cu-deficient and Ti-excessive stoichiometry of CaCu3Ti4O12 on both outer and inner regions regardless of sintering time. The change of dielectric constant and tan δ were shortly discussed with regard to the secondary phases and the microstructures of the different sintering hours.  相似文献   

6.
In this work, the nominal CaCu3?xMgxTi4.2O12 (0.00, 0.05 and 0.10) ceramics were prepared by sintering pellets of their precursor powders obtained by a polymer pyrolysis solution method at 1100 °C for different sintering time of 8 and 12 h. Very low loss tangent (tanδ)?<?0.009–0.014 and giant dielectric constant (ε′) ~?1.1?×?104–1.8?×?104 with excellent temperature coefficient (Δε′) less than ±?15% in a temperature range of ??60 to 210 °C were achieved. These excellent performances suggested a potent application of the ceramics for high temperature X8R and X9R capacitors. It was found that tanδ values decreased with increasing Mg2+ dopants due to the increase of grain boundary resistance (Rgb) caused by the very high density of grain, resulting from the substitution of small ionic radius Mg2+ dopants in the structure. In addition, CaCu3?xMgxTi4.2O12 ceramics displayed non-linear characteristics with the significant enhancements of a non-linear coefficient (α) and a breakdown field (Eb) due to Mg2+doping. The high values of ε′ (14012), α (13.64) and Eb (5977.02 V/cm) with very low tanδ value (0.009) were obtained in a CaCu2.90Mg0.10Ti4.2O12 ceramic sintered at 1100 °C for 8 h.  相似文献   

7.
A study of the effect of the presence of BIT (Bi4Ti3O12) in the dielectric and optical properties of the CaCu3Ti4O12 (CCTO) is presented. The samples were prepared by the solid state procedure. Mechanical alloying followed by the solid state procedure has been used successfully to produce powders of CaCu3Ti4O12 (CCTO) and BIT (Bi4Ti3O12) to be used in the composites. We also look at the effect of the grain size of the BIT and CCTO in the final properties of the composite. The samples were studied using X-Ray diffraction, scanning electron microscopy (SEM), Raman and infrared spectroscopy. We also did a study of the dielectric function K and dielectric loss of the samples. The role played by the grain size of CCTO and BIT in the dielectric constant and structural properties of the substrates are discussed. For frequencies below 10 MHz the K value presented by the CCTO100 sample is always higher than the K value presented by the BIT100 sample. At 100 Hz the value of K 1900 for the CCTO100 sample and 288 for the BIT100 sample. However for the composite sample one has an unexpected result. The dielectric constant is higher for all the frequencies under study. At 100 Hz the value of the K is around 10.000 for the BIT10 sample. Which is more than one order bigger compared to the CCTO100 value for the same frequency. Therefore, these measurements confirm the potential use of such materials for small high dielectric planar devices. These composites are also attractive for capacitor applications and certainly for microelectronics, microwave devices (cell mobile phones for example), where the miniaturization of the devices is crucial.  相似文献   

8.
CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using impedance spectroscopy. Polycrystalline pure phase CCTO thin films with (220) preferential orientation was obtained at a sintering temperature of 750°C. There was a bimodal size distribution of grains. The dielectric constant and loss factor at 1 kHz obtained for a film sintered at 750°C was k ∼ 2000 and tan δ ∼ 0.05.  相似文献   

9.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

10.
We have prepared ceramic CaCu3Ti4O12 samples by solid-state reaction and investigated the effect of high-pressure/high-temperature processing (p = 8.0 GPa, t = 1100°C) on the structure and electrical properties of CaCu3Ti4O12.  相似文献   

11.
Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The crystalline structure and the surface morphology of the films were markedly affected by the growth conditions. Rietveld analysis reveal a CCTO film with 100 % pure perovskite belonging to a space group Im3 and pseudo-cubic structure. The XPS spectroscopy reveal that the in a reducing N2 atmosphere a lower Cu/Ca and Ti/Ca ratio were detected, while the O2 treatment led to an excess of Cu, due to Cu segregation of the surface forming copper oxide crystals. The film present frequency -independent dielectric properties in the temperature range evaluated, which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 600-nm-thick CCTO films annealed at 600 °C at 1 kHz was found to be 70. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10?7 A/cm2 at a 1.0 V. The current–voltage measurements on MFS capacitors established good switching characteristics.  相似文献   

12.
The BaZr0.2Ti0.8O3 ceramics with perovskite structure were prepared by solid state reaction method with addition of x La2O3 and x La2O3?+?0.2 wt% Sm2O3 (x?=?0.0, 0.1 and 0.4 wt%). Microstructure and dielectric behaviour of the obtained ceramics were respectively investigated. The compositions of these ceramics demonstrated a single-phase cubic symmetry in a room-temperature X-ray diffraction study. The dielectric constant peak of those samples with addition of x La2O3 and x La2O3?+?0.2 wt% Sm2O3 greatly reduced along with increasing x. Simultaneously, a drastic increase of the values of γ was also observed when x rose, exhibiting a diffuse phase transition. T m increased along with increasing La content for x La2O3 doped BZT20 ceramics, but decreased along with increasing La content for x La2O3?+?0.2 wt% Sm2O3 doped BZT20 ceramics. Owing to the doping of Sm3+, the x La2O3?+?0.2 wt% Sm2O3 doped BZT20 ceramics have maintained very low and stable dissipation factors under an increasing environment temperature, making them superior candidates for applications.  相似文献   

13.
The influence of sintering conditions on the microstructural features and impedance characteristics of the giant dielectric constant material CaCu3Ti4O12 (CCTO) was investigated. The microstructure and impedance characteristics were found to be strongly dependent on the sintering conditions. Sintering of the CCTO ceramics at elevated temperatures (>1100 °C) for prolonged durations resulted in the segregation of Cu-rich phase, mostly confined to the surface, which was in concomitance with the appearance of the additional semicircle at the low frequency end in Impedance (Z*) plots. The absence of this additional semicircle in the Cu-deficient CCTO ceramics and the appearance of the same in Cu-rich CCTO ceramics that were deliberately fabricated corroborated the above observations. Also, La2/3Cu3Ti4O12 (LCTO), a low dielectric constant member of CCTO family, which consisted of small grains without the segregation of Cu-rich phase at the grain boundary, did not reveal the presence of additional semicircle in the Z*plots.  相似文献   

14.
High performance dielectric materials are highly required for practical application for energy storage technologies. In this work, high-k pristine and modified calcium copper titanate having nominal formula Ca0.95Nd0.05Cu3Ti4?xZrxO12 (x?=?0.01, 0.03 & 0.10) were synthesized and characterized for structural and dielectric properties. Single phase formation of the synthesized compositions was confirmed by X-ray diffraction patterns and further analysed using Rietveld refinement technique. Phase purity of the synthesized ceramics was further confirmed by Energy-dispersive X-ray Spectroscopy (EDX) analysis. SEM images demonstrated that grain size of the modified CCTO ceramics was controlled by Zr4+ ions due to solute drag effect. Impedance spectroscopy was employed to understand the grain, grain boundaries and electrode contribution to the dielectric response. Nyquist plots were fitted with a 2R-CPE model which confirms the non-ideality of the system. Substitution of specific concentration of Nd and Zr improved the dielectric properties of high dielectric permittivity (ε′ ~?16,902) and minimal tanδ (≤?0.10) over a wide frequency range. The giant ε′ of the investigated system was attributed to internal barrier layer capacitance (IBLC) effect and reduced tanδ accredited to enhanced grain boundaries resistance due to substitution of Zr4+ ions at Ti4+ site.  相似文献   

15.
Lanthanum modified lead zirconate titanate ceramics with lanthanum content changing from 2 to 6 at% La and a Zr/Ti ratio of 90/10 (PLZT x/90/10) have been analyzed by using X-ray diffraction, dielectric response, differential scanning calorimetry, and ferroelectric hysteresis. An antiferroelectric state was found to be stabilized, whereas the long-range ferroelectric state was disrupted by lanthanum substitution on the lead sites. A ferroelectric state is shown to be stable over an antiferroelectric state for low lanthanum contents in a wide temperature range, where both phases coexist. With the increase of the lanthanum concentration, the long-range coherency of the ferroelectric state is suppressed, i.e., the temperature range of the ferroelectric state stability decreased, disappearing for > 3 at% La.  相似文献   

16.
Pure and Mn-doped BaZr0.2Ti0.8O3 ceramics are prepared via the conventional solid state reaction method. The microstructures, dielectric properties, and diffuse transition of Mn-doped BaZr0.2Ti0.8O3 ceramics have been investigated. The results indicate that manganese ions enter the unit cell maintaining the perovskite structure of solid solution. The addition of manganese leads to the decrease of the Curie temperature. The dielectric loss of the Mn-doped BZT ceramics is lower than that of pure BZT ceramics, and decreases as Mn content increases. The diffuseness of the phase transition of Mn-doped BZT ceramics decreases with the increase of Mn content. There is no obvious frequency dispersion around the dielectric constant peaks for Mn-doped BZT ceramics. The coercive electric field and the remanent polarization decreases as Mn content increases.  相似文献   

17.
The formation behavior of CaCu3Ti4O12 (CCTO) had been investigated via solid state reaction from CaTiO3, CuO and TiO2 powders. In the temperature range from 750 to 1,200 °C, the reaction sequence was traced by XRD, and the microstructure evolution of calcined powders was also investigated by SEM. CCTO began to form owing to the reaction between CaTiO3, CuO and TiO2 at around 850 °C, and became the major phase at 1,000 °C. Finally, the single phase CCTO was obtained at 1,150 °C. However, CCTO was decomposed at CaTiO3, CuO and TiO2 when the temperature increased to 1,200 °C. In addition, no other intermediate phases occurred in the synthesized process. The formation behaviors indicated that CaTiO3 prevented the formation and growth of CCTO.  相似文献   

18.
A low temperature co-fired ceramic (LTCC) was fabricated at 910 °C /2 h from the powder mixture of Li2Zn3Ti4O12, TiO2 and a B2O3–La2O3–MgO–TiO2 glass (BLMT), and the influence of TiO2 on microstructure and dielectric properties of the composite was investigated in the composition range (wt%) of 20BLMT–(80???x)Li2Zn3Ti4O12–xTiO2 (x?=?0, 2.5, 5, 7.5, 9 and 10). The results showed that all samples consisted of Li2Zn3Ti4O12, TiO2, LaBO3 and LaMgB5O10 phase. And LaBO3, LaMgB5O10 and a small amounts of TiO2 were crystallized from BLMT glass during sintering process. As x increases, dielectric constant and temperature coefficient of resonance frequency of the composites demonstrated gradually increase, whereas the quality factor of the sample of x?=?0 wt% was about 41,500 GHz and the ones maintained stable at a high level of 49,000–51,000 GHz for other samples. The composite with x?=?9 wt% had an optimal microwave dielectric properties with the dielectric constant of 20.2, quality factor of 50,000 GHz and temperature coefficient of resonant frequency of ??0.33 ppm/°C.  相似文献   

19.
Dielectric properties of iron doped CaCu3Ti4O12 (CCTO), viz. CaCu3Ti3.9Fe0.1O12 (CCTFO) prepared by a novel semi-wet route have been investigated. X-ray diffraction of powder sintered at 900 °C show formation of single phase solid solution. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of CuO rich phase at grain boundaries of CCTFO. Nature of dielectric relaxation observed above room temperature is studied using complex plane impedance analysis and modulus spectroscopy. It has been found that out of the two relaxations reported earlier above room temperature, one occurring at lower temperature is due to grainboundaries interfacial polarization.  相似文献   

20.
We have prepared and characterized lithium titanate-based anode materials, Li4Ti5O12/C and Li4Ti5O12/C/Ag, using polyvinylidene fluoride as a carbon source. The formation of such materials has been shown to be accompanied by fluorination of the lithium titanate surface and the formation of a highly conductive carbon coating. The highest electrochemical capacity (175 mAh/g at a current density of 20 mA/g) is offered by the Li4Ti5O12-based anode materials prepared using 5% polyvinylidene fluoride. The addition of silver nanoparticles ensures a further increase in electrical conductivity and better cycling stability of the materials at high current densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号