首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Sb65Se35/Sb multilayer composite thin films were prepared by depositing the Sb65Se35 and Sb layers alternately. In situ resistance vs. temperature was measured and the crystallization temperature increased with thickening the Sb65Se35 layer in Sb65Se35/Sb thin films. The data retention temperature of 10 years increased greatly from 14 °C of pure Sb to 103 °C of [Sb65Se35(3 nm)/Sb(7 nm)]3. Also, the band gap was broadened and the surface became smoother. X-ray diffraction patterns for the studied materials revealed that Sb and Sb2Se3 phases coexisted in Sb65Se35/Sb thin films. Absorbing the advantages of the fast phase change for Sb, the [Sb65Se35(1 nm)/Sb(9 nm)]5 multilayer thin film had an ultrafast amorphization speed of 1.6 ns. The results indicated that Sb65Se35/Sb multilayer thin film was a potential phase change material for fast speed and good stability.  相似文献   

2.
Cu(In, Ga)Se2 (CIGS) solar cell is one of the most promising thin film solar cells. However the marketization of the CIGS solar cells is hindered by the uncertainty of the element ratios. Traditional sputtering with post selenization is one of the most widespread methods to produce the CIGS solar cells. Nevertheless, the post selenization process is the most difficult part of this technique, which could lead to element mismatch and heterogeneous. To simplify the preparing process, Cu(In, Ga)Se2 (CIGS) solar cells were prepared without post-selenization process by RF sputtering CIGS target with abundant Se element. We focus on the effect of working pressure, substrate temperature and sputtering power on the properties of CIGS solar cells. When CIGS thin film was deposited at 580 °C, 0.8 Pa working pressure and 160 W sputtering power, the solar cell showed the highest power conversion efficiency (PCE) of 5.77%, which is only 0.64% lower than that of the solar cell prepared by traditional sputtering with post selenization method, and the two kinds of solar cells have same structure without MgF2 antireflection layer, but the one-step sputtering method could greatly simplify the manufacture process of the CIGS solar cells. Our work makes clear that element Se would run off almost half during the sputtering process. And the element atomic ratios and the photovoltaic properties could be controlled by changing the sputtering parameters.  相似文献   

3.
In this paper, Cu2SnS3 (CTS) thin film is fabricated through sulfurization of oxide precursor which is deposited by pulsed laser deposition with a mixed CuO/SnO2 target. XRD and Raman analyses indicate a pure monoclinic Cu2SnS3 phase has been obtained by sulfurization at temperature from 500 to 600 °C. A compact and smooth film with polycrystalline structure is observed through SEM result. In addition, the CTS films show excellent absorbance with the band gap around 0.91 eV estimated by UV–Vis, which is suitable for the absorption layer of solar cells. Final devices were fabricated with a SLG/Mo/CTS/CdS/i-ZnO/AZO/Al structure. Device performance is improved with the temperature increasing. The best efficiency of CTS-based solar cells is 0.69% with an open-circuit voltage of 144 mV and a short-circuit current density of 18.30 mA/cm?2.  相似文献   

4.
In comparison to Ge2Sb2Te5 (GST) and pure Sb70Se30 (SbSe) thin films, superlattice-like (SLL) Ge/Sb70Se30 (Ge/SbSe) has a higher crystallization temperature, larger crystallization activation energy, better data retention and lower power consumption. SLL Ge/SbSe thin films with different thickness of Ge and SbSe layers were prepared by magnetron sputtering system. The amorphous-to-crystalline transitions of SLL Ge/SbSe thin films were investigated through in situ film resistance measurement. The crystallization activation energy of SLL Ge/SbSe thin films was calculated from a Kissinger plot. The data retention time was estimated through isothermal time-dependent resistance measurement by Arrhenius equation. The phase structure of the thin films annealed at different temperatures was investigated by using X-ray diffraction. Phase change memory cells based on the SLL [Ge(8 nm)/SbSe(5 nm)]4 thin films were fabricated to test and evaluate the switching speed and operation consumption.  相似文献   

5.
This work reports on the development of CdZn(Se1?xTex)2 thin films utilized as the photoanode for photoelectrochemical cells (PECs). It was found that the incorporation of tellurium plays an important role in determining the optostructural, morphological, compositional and PEC performance of thin films. XRD measurements showed that the deposited thin films are in the mixed phases with a nanocrystalline nature. SEM images indicated that the surface morphology is favourable for effective light absorption in the solar spectrum. The EDS spectrum confirmed that thin film deposition occured in a stoichiometric manner. A detailed quantitative study was also executed using XPS and revealed the presence of Cd2+, Zn2+, Se2? and Te2? elements in the deposited thin film. Finally, the deposited thin films were tested for their photoelectrochemical (PEC) performance. The PEC study illustrated that CdZn(Se1?xTex)2 thin film showed the highest power conversion efficiency (η) of 1.13% among reported values.  相似文献   

6.
Calcium copper titanate, CaCu3Ti4O12, CCTO, thin films with polycrystalline nature have been deposited by RF sputtering on Pt/Ti/SiO2/Si (100) substrates at a room temperature followed by annealing at 600 °C for 2 h in a conventional furnace. The crystalline structure and the surface morphology of the films were markedly affected by the growth conditions. Rietveld analysis reveal a CCTO film with 100 % pure perovskite belonging to a space group Im3 and pseudo-cubic structure. The XPS spectroscopy reveal that the in a reducing N2 atmosphere a lower Cu/Ca and Ti/Ca ratio were detected, while the O2 treatment led to an excess of Cu, due to Cu segregation of the surface forming copper oxide crystals. The film present frequency -independent dielectric properties in the temperature range evaluated, which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 600-nm-thick CCTO films annealed at 600 °C at 1 kHz was found to be 70. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10?7 A/cm2 at a 1.0 V. The current–voltage measurements on MFS capacitors established good switching characteristics.  相似文献   

7.
Quaternary kesterite Cu2ZnSnS4 (CZTS) thin films have been prepared via a simple spin-coating technique based on a sol–gel precursor of 2-methoxyethanol solution with metal salts and thiourea. Solution processed CZTS thin film growth parameters using complexing agent triethanolamine (TEA) have been investigated. Effects of complexing agent TEA on structural, morphological, optical, electrical and photovoltaic properties of CZTS thin films were systematically investigated. X-ray diffraction and Raman spectroscopy studies reveal that amorphous nature of CZTS thin film changes into polycrystalline with kesterite crystal structure with optimized TEA concentartion. Surface morphology of CZTS films were analyzed by field emission scanning electron microscope and atomic force microscope, which revealed the smooth, uniform, homogeneous and densely packed grains and systematic grain growth formation with varying TEA concentrations. UV–Vis spectra revealed a direct energy band gap ranging from 1.78 to 1.50 eV, which was found to depend upon the TEA concentration. X-ray photoelectron spectroscopy demonstrated stoichiometric atomic ratios of multicationic quaternary CZTS thin film grown without sulphurization. p-type conductivity was confirmed using Hall measurements and the effect of varying concentartion of TEA on electrical and photovoltaic properties are studied. The SLG/FTO/ZnO/CZTS/Al thin film solar cell is fabricated with the CZTS absorber layer grown at optimized TAE concentration of 0.06 M. It shows a power conversion efficiency of 0.87% for a 0.16 cm2 area with Voc = 0.257 mV, Jsc = 8.95 mA/cm2 and FF?=?38%.  相似文献   

8.
Polycrystalline BiFe0.25Cr0.75O3 thin films have been fabricated via a chemical deposition technique at various thicknesses (60-, 130-, 190-, 240 nm). The effect of Cr substitution on BiFeO3 structures have been briefly discussed by performing X-ray diffraction and SAED pattern. The nature of the films surface at different thicknesses were briefly discussed using scanning electron microscope and transmission electron microscope. Roughness and other amplitude parameters of the film at different thickness are studied through atomic force microscopy. The result indicates that, when changing the thickness of the film, the average bond length gets changed causing difference in electrical and magnetic properties. Electrical and dielectric study reveals thickness dependent property and is deeply understood from space charge, oxygen vacancies and super-exchange interaction. Film at 60 nm shows higher magnetization with 8.5042 emu/cm3 and with a retentivity of 3.852 emu/cm3 than the thick film. Further, the spin-cooling behavior and magnetization below room temperature from 2 to 300 K were analyzed briefly for spintronics applications.  相似文献   

9.
The (In1?xCrx)2O3 powders as well as thin films of x = 0.03, 0.05 and 0.07 were synthesized using a solid state reaction and an electron beam evaporation technique (on glass substrate), respectively. The influence of Cr doping concentration on structural, optical and magnetic properties of the In2O3 samples was systematically studied. The X-ray diffraction results confirmed that all the Cr doped In2O3 samples exist cubic structure of In2O3 without any secondary phases presence. The chemical composition analyses showed that all the Cr doped In2O3 compounds were nearly stoichiometric. The X-ray photoelectron spectroscopy analysis of the Cr doped In2O3 thin films showed an increase of oxygen vacancies with Cr concentration and the existence of Cr as Cr3+ state in the host In2O3 lattice. A small blue shift in the optical band gap was observed in the powder compounds, when the dopant concentration increased from x = 0.03 to x = 0.07. In thin films, the band gap found to increase from 3.63 to 3.74 eV, with an increase of Cr concentration. The magnetic measurements show that the undoped In2O3 bulk powder sample has the diamagnetic property at room temperature. And a trace of paramagnetism was observed in Cr doped In2O3 powders. However (In1?xCrx)2O3 thin films (x = 0.00, 0.03, 0.05 and 0.07) samples shows soft ferromagnetism. The observed ferromagnetism in thin films are attributed to oxygen vacancies created during film prepared in vacuum conditions. The ferromagnetic exchange interactions are established between metal cations via free electrons trapped in oxygen vacancies (F-centers).  相似文献   

10.
The doping of Cu2ZnSnSe4 semiconductor with Ge element has demonstrated improvements to kesterite solar cell efficiency. However, the impact of different Cu concentrations on Cu2ZnSnGeSe4/CdS solar cell performance has been poorly studied. In this work, Cu2ZnSnGeSe4 thin films with different Cu contents were synthesized by selenization of sequential thermal evaporation precursors. Solar cells based on kesterite-type Cu2ZnSnGeSe4 (CZTGSe) were fabricated and the influence of the Cu thickness on the chemical composition and morphology of the layers and electro-optical properties of solar cells was studied. The stacking process was performed at room substrate temperature. Efficiency values in the range of 2.0–6.8% are reported as a function of Cu concentration. The highest efficiency of 6.8%, was achieved for solar cell with glass/Mo/CZTGSe/CdS/i-ZnO/ITO structure using the stacking of Cu (3 nm)/Sn (248 nm)/Cu (112 nm)/Zn (174 nm)/Ge (20 nm).  相似文献   

11.
The Bi1?+?xFe0.95Cr0.05O3 (BFCO) (x?=?0, 5, 10, 15 and 20%) thin films are fabricated on FTO/glass substrate using a chemical solution deposition method and sequential-layer annealing process. The effects of the excess Bi content on crystalline structure, morphology, and electrical performance of BFCO thin films are investigated. All the BFCO thin films are crystallized into polycrystalline perovskite structure and belonging to the space group of R3c. The BFCO thin films with 5 and 10% excess Bi contents possess no impurity phase. Especially, a dense surface morphology and columnar crystal structure can be obtained for the film with 5% excess Bi content. Especially, the one possesses superior ferroelectricity with a relative high remnant polarization (P r) of 69.8 µC/cm2 and low coercive electric field (E c) of 291 kV/cm at 1 kHz due to the relatively low leakage current density of 3.04?×?10??5 A/cm2 at 200 kV/cm.  相似文献   

12.
In the present investigation, we have successfully synthesized polycrystalline Sb2Se3 thin films by single-step electrochemical method. Effect of concentration of precursor solution on structural, morphological, optical, and wettability properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption, and contact angle measurement have been investigated. It is evident from XRD pattern that Sb2Se3 thin films are polycrystalline having orthorhombic crystal structure. Also, as precursor concentration increases the diffraction peak intensity also increases. Scanning electron micrographs reveal that the increase in precursor concentration causes the formation of soap foam like microstructure which is spread in the form of ellipsoids over whole substrate surface. The optical band gap decreases from 1.49 to 1.35 eV and contact angle decreases from 40° to 13°, i.e., the surface of Sb2Se3 thin films converts from hydrophilic to superhydrophilic nature due to increase in precursor concentration. In addition, the holographic interferometric properties have been studied. The thickness, stress to substrate and deposited mass of the thin films is determined using double exposure holographic interferometry (DEHI) technique.  相似文献   

13.
Solar cell technologically important binary indium selenide thin film has been developed by relatively simple chemical method. The reaction between indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium at room temperature gives deposits In2Se3 thin film. Various preparative parameters are discussed. The as grown films were found to be transparent, uniform, well adherent, red in color. The prepared films were studied using X-ray diffraction, scanning electron microscopy, atomic absorption spectroscopy, Energy dispersive atomic X-ray diffraction, optical absorption and electrical conductivity properties. The direct optical band gap value Eg for the films was found to be as the order of 2.35 eV at room temperature and having specific electrical conductivity of the order of 10−2 (Ω cm)−1 showing n-type conduction mechanism. The utility of the adapted technique is discussed from the point of view of applications considering the optoelectric and structural data obtained.  相似文献   

14.
CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using impedance spectroscopy. Polycrystalline pure phase CCTO thin films with (220) preferential orientation was obtained at a sintering temperature of 750°C. There was a bimodal size distribution of grains. The dielectric constant and loss factor at 1 kHz obtained for a film sintered at 750°C was k ∼ 2000 and tan δ ∼ 0.05.  相似文献   

15.
Titanium dioxide (TiO2) thin films were prepared by sol–gel spin coating method and deposited on ITO-coated glass substrates. The effects of different heat treatment annealing temperatures on the phase composition of TiO2 films and its effect on the optical band gap, morphological, structural as well as using these layers in P3HT:PCBM-based organic solar cell were examined. The results show the presence of rutile phases in the TiO2 films which were heat-treated for 2 h at different temperatures (200, 300, 400, 500 and 600 °C). The optical properties of the TiO2 films have altered by temperature with a slight decrease in the transmittance intensity in the visible region with increasing the temperature. The optical band gap values were found to be in the range of 3.28–3.59 eV for the forbidden direct electronic transition and 3.40–3.79 eV for the allowed direct transition. TiO2 layers were used as electron transport layer in inverted organic solar cells and resulted in a power conversion efficiency of 1.59% with short circuit current density of 6.64 mA cm?2 for TiO2 layer heat-treated at 600 °C.  相似文献   

16.
Polycrystalline n-type CuIn3Se5 and CuIn5Se8 films with thicknesses from 0.4 to 1 μm have been grown by pulsed laser ablation of bulk p-CuIn3Se5 and n-CuIn5Se8 crystals in vacuum. The temperature dependences of the resistivities of these crystals are determined by deep donor levels with energies E D ? 0.2–0.3 eV. Photosensitive thin-film structures based on these films have been created for the first time and their photosensitivity spectra have been measured. The possibility of using thin CuIn3Se5 and CuIn5Se8 films in broadband photoconverters is demonstrated.  相似文献   

17.
As-deposited sputtered ZnO:Al (AZO) thin films having high transparency (T?≥?85% at 550 nm of wavelength) and good electrical properties (ρ?=?2.59?×?10?04 Ω cm) are etched to get suitable light trapping in thin film solar cells, using reactive ion etching method in sulfur hexafluoride–argon (SF6/Ar) plasma and trifluoromethane–argon (CHF3/Ar) plasma to texture their surface. Though the electrical properties of the films are not affected much by the etching process but significant increment in the average haze values in the wave length range of 350–1100 nm in the etched AZO films (19.21% for SF6/Ar and 22.07% for CHF3/Ar plasma etched) are found compared to as-deposited AZO films (5.61%). Increment in haze value is due to more scattering of light from the textured surface. These textured substrates are used as front transparent conducting oxide electrode for the fabrication of amorphous silicon solar cells. Solar cells fabricated on etched AZO substrates show 7.76% increase in conversion efficiency compared to as-deposited AZO substrates.  相似文献   

18.
Directionally solidified Al2O3/Er3Al5O12/ZrO2 ternary eutectic ceramic in situ composite rods with length of 110 mm have been fabricated by laser floating zone melting. The microstructural characteristics of steady growth zone, initial growth zone and solid/liquid interface are investigated under high temperature gradient. In the steady growth zone, the eutectic spacing (λ) is rapidly decreased as increasing the growth rate (V), and the corresponding relationship between growth rate and eutectic spacing is determined to be λ = 11.14 × V ?1/2. The temperature gradient has been measured to be about 5.3 × 103 K/cm. In the initial growth zone, the melting process and temperature distribution are recorded by infrared thermal imager, and several unstable complex microstructures are observed. In the quenched zone, the regular eutectics with minimum eutectic spacing of 200 nm are obtained. Moreover, the solid/liquid interface during solidification shows convex interface morphology and the interface height is gradually decreased as increasing the growth rate. The eutectic growth behaviors at the center and edge of the as-grown rod are compared and discussed.  相似文献   

19.
In this study, we successfully developed a novel method to create [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoscale aggregates using supercritical carbon dioxide (scCO2) annealing and fabricated bulk heterojunction (BHJ) solar cells with the nanoscale PCBM to improve device performance. PCBM forms nanoscale aggregates with a size of approximately 70 nm after scCO2 annealing at 11 MPa and 50 °C for 60 min. However, PCBM remains amorphous after thermal annealing (TA) at 150 °C for 5 min. The morphology, structure, and crystallinity of poly(3-hexylthiophene) (P3HT) in the scCO2-treated P3HT film are nearly the same as those in the TA-treated P3HT film. In the P3HT/PCBM blend, the formation of PCBM nanoscale aggregates by scCO2 treatment decreases the disturbance for P3HT crystallization and improves diffusion and regular packing of P3HT molecular chains. This increases the crystallinity of P3HT so that it becomes higher than that in the TA-treated blend film. The nanoscale aggregates of PCBM and the higher crystallinity of P3HT give the scCO2-treated P3HT/PCBM BHJ solar cells a maximum power conversion efficiency (PCE) of 2.74%, which is much higher than that of the as-cast device (PCE is 1.70%) and a little higher than the highest PCE (2.64%) of thermally annealed devices. These results indicate that scCO2 is an effective, mild, and environmental method to modulate the nanoscale aggregates of PCBM and to improve the PCE of BHJ solar cells. However, the size of the PCBM aggregates is a little larger than the most suitable size of the exciton diffusion length, leading to limited improvement of the PCE.  相似文献   

20.
The melt-quenched Sn10Sb20Se70 sample in the bulk form was used to prepare films on well-cleaned glass substrates by thermal evaporation method. The activation energy for glass transition (apparent) and crystallization has been analyzed by using the Kissinger formulation. The X-ray diffraction study shows the crystallization of Sb2Se3 phase in the major proportion as compared to the SnSe2 phase. The SEM images film of the show the appearance of spherical globules upon annealing below the glass transition temperature. The effect of annealing temperature on the electrical and optical properties has been studied. A linear fit between ΔE and E o is observed, indicating the validity of Meyer–Neldel rule with the change in the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号