首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
张维声  孙国  郭旭  单鹏 《工程力学》2013,30(7):22-27
该文提出了一种结构拓扑与内嵌构件布局联合优化的新颖方法。这种方法突出的特点是利用水平集函数隐式地描述不规则的构件形状,因此可以非常方便地处理构件之间的互不覆盖约束条件。数值算例表明:较之文献中已有的方法,该文算法能够以更小的计算量有效地实现结构拓扑与内嵌构件布局的联合优化。  相似文献   

2.
王存福  赵敏  葛彤 《工程力学》2015,32(1):247-256
探究了拓扑优化设计方法在水下耐压结构设计中的应用。与固定载荷作用下结构的优化设计相比,此类问题需要正确地确定压力作用面。在拓扑优化过程中,利用变密度法得到的中间结构拓扑实际上可以看成是灰度图。基于此,提出了基于图像分割技术的压力加载面搜索方法,并利用距离正规化水平集方法(DRLSE)检测图像边界。利用数值算例验证了方法的有效性,并研究了静水压力作用下结构的拓扑优化设计问题。在给定材料约束的前提下,研究了不同边界条件下耐压壳体的最小柔顺度及最优结构拓扑形式。优化结果说明了该方法在多球交接耐压壳结构形式优化设计及复杂边界条件下耐压结构新形式探索中的工程应用价值。  相似文献   

3.
为了实现尺度关联周期性多孔结构的隔振性能优化,提出一种周期性多孔结构特征值拓扑优化方法.基于子结构动态凝聚方法对多孔结构的刚度和质量矩阵进行缩减,采用局部水平集函数(LLSF)对多孔结构进行几何隐式描述,以最大化前6阶特征值为目标函数,以结构体积分数为约束条件,建立周期性多孔结构特征值拓扑优化模型,采用优化准则法对拓扑...  相似文献   

4.
在构建负泊松比结构拓扑优化模型时,直接用负泊松比的数学表达式构造目标函数,将使得目标函数高度非线性,迭代过程敏度分析困难。采用线性拟合法,构建了具有线性特征的负泊松比微结构拓扑优化目标函数,基于能量法和均匀化方法,结合拓扑优化理论,构建了一种可以快速准确求解负泊松比的拓扑优化设计模型,求解该模型得到了一种优化的拓扑构型及相应的负泊松比值。根据优化求解得到的结构模型,参考国家标准GB/T 22315-2008《金属材料弹性模量和泊松比试验方法》,利用有限元软件对其泊松比进行仿真计算,然后采用激光加工方式制造试样,并测试其泊松比,经过与优化模型求解得到的泊松比值对比分析,验证了所构建优化模型的正确性。本文方法既避免了以负泊松比表达式为优化函数时会出现的高度非线性问题,也降低了求解的复杂程度,为负泊松比微结构的设计提供了一种参考方法。  相似文献   

5.
从工程实际的角度来说,一般不允许结构形式中包含重叠单元。目前桁架拓扑优化的基结构法在选定基节点的情况下一般不建重叠单元,这导致可行域缩小,使优化不能找到更优解,人为增删杆件缺乏科学依据。针对该问题,该文对重叠给出准确的数学描述,建立包含重叠杆的基结构,利用Heaviside函数将拓扑变量连续化处理,使之在优化过程中可以获取目标函数、约束函数的敏度信息,同时考虑在拓扑优化中加入基频约束以避免出现机构,并加入稳定性约束防止出现压杆失稳,通过优化模型实现重叠过滤。最后通过两个案例计算证明可以找到更优解,验证了该方法的有效性。  相似文献   

6.
石连拴 《工程力学》2000,2(A02):74-78
本文对离散变量结构拓扑优化设计的综合设计方法作了进一步的研究。通过对离散变量结构拓扑优化设计综合算法的数学模型与传统的拓扑估化模型所作的比较,指出因为综合算法的拓扑优化模型中既所含了截面变量又包含拓扑变量,它反击了结构拓扑优化的本质,从而能有效地避免“奇异拓扑”的问题。由于模型的目标函数和约束函数的单调性,从而可以高效地利用相对差商法进行求解。通过数值实验对综合算法的数值稳定性进行了讨论,为应用于  相似文献   

7.
龙凯  陈广华 《工程力学》2012,29(8):308-312,318
:为了克服连续体结构拓扑优化中的数值不稳定现象,定义了表征物质点及其领域有无的物质点拓扑变量,提出基于物质点描述的双向渐进式拓扑优化方法.基于过滤法构造拓扑变量场的插值函数,从而在拓扑优化模型中自然消除了棋盘格现象.为适用于不同单元类型和网格离散形式等,重新定义了灵敏度密度.通过二维数值算例对理论方法进行验证.结果表明:方法在连续体结构拓扑优化设计中具有可行性和有效性.  相似文献   

8.
首次利用水平基物质分布函数推出域内积分与边界积分泛函的形状导数 , 建立了复合材料刚性连续结构拓扑优化设计理论的新模型。通过将形状导数和增广的 Lagrangian 乘子法相结合 , 提出了复合材料结构拓扑优化敏度分析的新方法。设计边界的进化是通过人为掌握目标函数下降的速度来控制。水平基函数的曲面在不改变拓扑结构的前提下上下运动 , 从而通过边界的合并与分离改变嵌入其中的零水平基面上设计构件的拓扑结果。广泛的 2D复合材料悬臂梁研究验证了本文中方法的有效性。   相似文献   

9.
乔升访  周克民 《工程力学》2016,33(1):252-256
用区间分析方法研究了不确定荷载下结构拓扑优化方法。采用类桁架材料模型建立拓扑优化类桁架连续体结构。根据区间变量运算法则推导出不确定荷载下应力约束体积最小类桁架结构的拓扑优化方法。首先采用区间分析方法得到任一点的最不利荷载工况下应变状态。在此应变状态下,利用满应力准则优化类桁架材料中杆件的方向和密度。如此反复分析和优化,直至迭代收敛。最后由类桁架中杆件分布场可以近似离散得到桁架结构。通过几个数值算例验证了方法的有效性。数值算例显示了不确定荷载下的结构拓扑优化布局更合理。  相似文献   

10.
为了满足制造工艺和静强度要求,提出一种综合考虑最小尺寸控制和应力约束的柔顺机构混合约束拓扑优化设计方法。采用改进的固体各向同性材料插值模型描述材料分布,利用多相映射方法同时控制实相和空相材料结构的最小尺寸,采用最大近似函数P范数求解机构的最大应力,以机构的输出位移最大化作为目标函数,综合考虑最小特征尺寸控制和应力约束建立柔顺机构混合约束拓扑优化数学模型,利用移动渐近算法求解柔顺机构混合约束拓扑优化问题。数值算例结果表明,混合约束拓扑优化获得的柔顺机构能够同时满足最小尺寸制造约束和静强度要求,机构的von Mises等效应力分布更加均匀。  相似文献   

11.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a level‐set‐based topology optimization method based on numerically consistent sensitivity analysis. The proposed method uses a direct steepest‐descent update of the design variables in a level‐set method; the level‐set nodal values. An exact Heaviside formulation is used to relate the level‐set function to element densities. The level‐set function is not required to be a signed‐distance function, and reinitialization is not necessary. Using this approach, level‐set‐based topology optimization problems can be solved consistently and multiple constraints treated simultaneously. The proposed method leads to more insight in the nature of level‐set‐based topology optimization problems. The level‐set‐based design parametrization can describe gray areas and numerical hinges. Consistency causes results to contain these numerical artifacts. We demonstrate that alternative parameterizations, level‐set‐based or density‐based regularization can be used to avoid artifacts in the final results. The effectiveness of the proposed method is demonstrated using several benchmark problems. The capability to treat multiple constraints shows the potential of the method. Furthermore, due to the consistency, the optimizer can run into local minima; a fundamental difficulty of level‐set‐based topology optimization. More advanced optimization strategies and more efficient optimizers may increase the performance in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The proposed optimization method seeks to identify the buoy design that has the highest stiffness, allowing it to withstand deepwater pressure, uses the least material and has a minimum prescribed buoyancy. Laplace's equation is used to simulate underwater fluid pressure, and a polymer buoyancy module is considered to be linearly elastic. Both domains are solved with the finite element method. Using an extended bi-directional evolutionary structural optimization (BESO) method, the design-dependent pressure loads are modelled in a straightforward manner without any need for pressure surface parametrization. A new buoyancy inequality constraint sets a minimum required buoyancy effect, measured by the joint volume of the structure and its interior voids. Solid elements with low strain energy are iteratively removed from the initial design domain until a certain prescribed volume fraction. A test case is described to validate the optimization problem, and a buoy design problem is used to explore the features of the proposed method.  相似文献   

14.
In this paper, we propose a three‐dimensional (3D) grayscale‐free topology optimization method using a conforming mesh to the structural boundary, which is represented by the level‐set method. The conforming mesh is generated in an r‐refinement manner; that is, it is generated by moving the nodes of the Eulerian mesh that maintains the level‐set function. Although the r‐refinement approach for the conforming mesh generation has many benefits from an implementation aspect, it has been considered as a difficult task to stably generate 3D conforming meshes in the r‐refinement manner. To resolve this task, we propose a new level‐set based r‐refinement method. Its main novelty is a procedure for minimizing the number of the collapsed elements whose nodes are moved to the structural boundary in the conforming mesh; in addition, we propose a new procedure for improving the quality of the conforming mesh, which is inspired by Laplacian smoothing. Because of these novelties, the proposed r‐refinement method can generate 3D conforming meshes at a satisfactory level, and 3D grayscale‐free topology optimization is realized. The usefulness of the proposed 3D grayscale‐free topology optimization method is confirmed through several numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This paper discusses a global optimization method of robust truss topology under the load uncertainties and slenderness constraints of the member cross-sectional areas. We consider a non-stochastic uncertainty of the external load, and attempt to minimize the maximum compliance corresponding to the most critical load. A design-dependent uncertainty model in the external load is proposed in order to consider the variation of truss topology rigorously. It is shown that this optimization problem can be formulated as a 0–1 mixed integer semidefinite programming (0–1MISDP) problem. We propose a branch-and-bound method for computing the global optimal solution of the 0–1MISDP. Numerical examples illustrate that the topology of robust optimal truss depends on the magnitude of uncertainty. The presented method can provide global optimal solutions for benchmark examples, which can be used for evaluating the performance of any other local optimization method for robust structural optimization.  相似文献   

16.
Level set methods are becoming an attractive design tool in shape and topology optimization for obtaining efficient and lighter structures. In this paper, a dynamic implicit boundary‐based moving superimposed finite element method (s‐version FEM or S‐FEM) is developed for structural topology optimization using the level set methods, in which the variational interior and exterior boundaries are represented by the zero level set. Both a global mesh and an overlaying local mesh are integrated into the moving S‐FEM analysis model. A relatively coarse fixed Eulerian mesh consisting of bilinear rectangular elements is used as a global mesh. The local mesh consisting of flexible linear triangular elements is constructed to match the dynamic implicit boundary captured from nodal values of the implicit level set function. In numerical integration using the Gauss quadrature rule, the practical difficulty due to the discontinuities is overcome by the coincidence of the global and local meshes. A double mapping technique is developed to perform the numerical integration for the global and coupling matrices of the overlapped elements with two different co‐ordinate systems. An element killing strategy is presented to reduce the total number of degrees of freedom to improve the computational efficiency. A simple constraint handling approach is proposed to perform minimum compliance design with a volume constraint. A physically meaningful and numerically efficient velocity extension method is developed to avoid the complicated PDE solving procedure. The proposed moving S‐FEM is applied to structural topology optimization using the level set methods as an effective tool for the numerical analysis of the linear elasticity topology optimization problems. For the classical elasticity problems in the literature, the present S‐FEM can achieve numerical results in good agreement with those from the theoretical solutions and/or numerical results from the standard FEM. For the minimum compliance topology optimization problems in structural optimization, the present approach significantly outperforms the well‐recognized ‘ersatz material’ approach as expected in the accuracy of the strain field, numerical stability, and representation fidelity at the expense of increased computational time. It is also shown that the present approach is able to produce structures near the theoretical optimum. It is suggested that the present S‐FEM can be a promising tool for shape and topology optimization using the level set methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
针对稳态热传导问题,以结构散热弱度最小为目标,建立了连续体传热结构的拓扑优化模型和方法,给出了相应的算例。优化方法中分别建立了设计相关载荷和非相关载荷的灵敏度列式,采用Rational Approximation of Material Properties (RAMP)方法对材料密度进行惩罚,利用优化准则法控制设计目标与材料分布,以敏度过滤技术抑制棋盘格效应。算例的结果直观显示了设计相关载荷和非设计相关载荷以及复合载荷对结构拓扑构型的影响规律,表明了该文考虑设计相关载荷的稳态热传导结构拓扑优化方法的合理性。  相似文献   

18.
In this paper, a piecewise constant level set (PCLS) method is implemented to solve a structural shape and topology optimization problem. In the classical level set method, the geometrical boundary of the structure under optimization is represented by the zero level set of a continuous level set function, e.g. the signed distance function. Instead, in the PCLS approach the boundary is described by discontinuities of PCLS functions. The PCLS method is related to the phase‐field methods, and the topology optimization problem is defined as a minimization problem with piecewise constant constraints, without the need of solving the Hamilton–Jacobi equation. The result is not moving the boundaries during the iterative procedure. Thus, it offers some advantages in treating geometries, eliminating the reinitialization and naturally nucleating holes when needed. In the paper, the PCLS method is implemented with the additive operator splitting numerical scheme, and several numerical and procedural issues of the implementation are discussed. Examples of 2D structural topology optimization problem of minimum compliance design are presented, illustrating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a level set‐based shape and topology optimization method for conceptual design of cast parts. In order to be successfully manufactured by the casting process, the geometry of cast parts should satisfy certain moldability conditions, which poses additional constraints in the shape and topology optimization of cast parts. Instead of using the originally point‐wise constraint statement, we propose a casting constraint in the form of domain integration over a narrowband near the material boundaries. This constraint is expressed in terms of the gradient of the level set function defining the structural shape and topology. Its explicit and analytical form facilitates the sensitivity analysis and numerical implementation. As compared with the standard implementation of the level set method based on the steepest descent algorithm, the proposed method uses velocity field design variables and combines the level set method with the gradient‐based mathematical programming algorithm on the basis of the derived sensitivity scheme of the objective function and the constraints. This approach is able to simultaneously account for the casting constraint and the conventional material volume constraint in a convenient way. In this method, the optimization process can be started from an arbitrary initial design, without the need for an initial design satisfying the cast constraint. Numerical examples in both 2D and 3D design domain are given to demonstrate the validity and effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号