首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
One of the main points of clinical care is the catch-up growth of VLBW infants especially those of small gestational age (SGA). The required high amounts of protein are often not tolerated [1]. Metabolic imbalances due to immaturities of protein metabolism are described [2, 3] also in infants SGA feeding amounts of proteins comparable to mature newborns [4]. Remarkable signs of overloading by proteins are the elevation of amino acid and the bile acid concentrations in the serum [3, 5, 6]. In some of those cases [7] late metabolic acidosis (LMA) is to be seen. There is evidence in the literature that sodium bicarbonate influences nitrogen [8] and ionic balances [9] in newborn animals without any signs of acidosis, besides its simple buffer function. The aim of this study was to control changes of metabolic imbalances after bicarbonate supplementation before development of acidosis in predisposed infants. Therefore we determined parameters, which were significantly changed with LMA [6] during two feeding schedules: firstly, during bolus supplementation in infants feeding (2.0 ± 0.4) g/kg BW · d protein and secondly during chronic supplementation of bicarbonate to (3.0 ± 0.4) g/kg BW · d protein. In relation to the improvement of the nitrogen balance in growing lambs [7] we supposed comparable effect of bicarbonate on metabolic imbalances caused by protein overloading.  相似文献   

2.
A challenge model was used to evaluate a new approach to controlling acute acidosis. Acute acidosis reduces performance in both dairy and beef cattle and most often occurs as a consequence of ingestion of large amounts of readily fermentable starch, resulting in increased production of volatile fatty acids (VFA) and lactic acid and a reduction in ruminal pH. Acarbose is an α-amylase and glucosidase inhibitor that slows the rate of degradation of starch to glucose, thereby reducing the rate of VFA production and maintaining rumen pH at a more stable level. It is commercially available (Glucobay, Bayer, Wuppertal, Germany) and indicated for the control of blood glucose in diabetic patients. The ability of acarbose to reduce the incidence of acidosis and the comparative efficacies of acarbose, sodium bicarbonate, and monensin were tested in 3 acute acidosis challenge experiments in cattle. Rumen-cannulated Holstein steers were challenged with a mixture of 48.4% cornstarch, 48.4% ground corn, 2.1% sodium caseinate, and 1.1% urea with or without test substance. The challenge was administered at a rate of 12.5 g/kg of body weight (BW) as a slurry through the cannula directly into the rumen. Ruminal pH was monitored at 10-min intervals throughout the study. Animals were removed from study and rumen contents replaced if they exhibited acute acidosis as defined as pH <4.5. If acidosis was not observed within 24 h, animals were subjected to a second challenge. Ruminal fluid samples were taken for measurement of VFA and lactate concentrations at various intervals after the challenge. In experiment 1, the carbohydrate challenge induced acidosis in 4 of 4 control animals and 0 of 4 animals treated with 2.14 or 21.4 mg of acarbose/kg of BW in the challenge based on the criterion of pH <4.5. In experiment 2, the carbohydrate challenge induced acidosis in 4 of 7 control animals and 1 of 7 animals when 1.07 mg of acarbose/kg of BW was included in the challenge. In experiment 3, acidosis was induced in 7 of 7 animals in the control, 1% sodium bicarbonate, and 12 mg of monensin/kg of dry matter intake groups and in 3 of 8 steers administered 1.07 mg of acarbose/kg of BW in the challenge. Increases in lactate concentrations and decreases in total VFA associated with acute acidosis were mitigated by acarbose. Thus, acarbose, an amylase and glucosidase inhibitor, prevented or reduced the incidence of acidosis in an acute challenge model in steers and was more effective than monensin or sodium bicarbonate.  相似文献   

3.
This study aimed to investigate the effect of dietary supplementation with leucine and phenylalanine on pancreas development, enzyme activity, and related gene expression in male Holstein calves. Twenty male Holstein calves [1 d of age, 38 ± 3 kg of body weight (BW)] were randomly assigned to 1 of the following 4 treatment groups with 5 calves in each group: control, leucine supplementation (1.435 g/L of milk), phenylalanine supplementation (0.725 g/L of milk), and leucine and phenylalanine (1.435 + 0.725 g/L of milk). The diets were made isonitrogenous with the inclusion of alanine in each respective treatment. The feeding trial lasted for 8 wk, including 1 wk for adaption and 7 wk for the feeding experiment. Leucine tended to increase the concentration of total pancreatic protein (mg/kg of BW). Phenylalanine increased the concentrations of plasma insulin, cholecystokinin, and pancreatic DNA (mg/g) and the expression of trypsin gene but decreased the pancreatic protein:DNA ratio and tended to decrease the pancreas weight (g/kg of BW). No differences were observed in total pancreatic DNA (mg/pancreas and mg/kg of BW), pancreatic protein (mg/pancreas), or activities of α-amylase, trypsin, and lipase. The relative expression levels of the genes encoding α-amylase and lipase did not differ among the 4 groups. The supplementation of both leucine and phenylalanine showed an interaction on the pancreas weight (g and g/kg of BW) and a tendency of an interaction on the pancreatic protein concentration (mg/g of pancreas and mg/kg of BW) and the plasma glucose concentration. Leucine tended to increase the size of the pancreatic cells, whereas phenylalanine tended to increase the number of pancreatic cells. However, neither AA affected the activities of the pancreatic enzymes of the calves. These results indicate that leucine and phenylalanine supplementation in milk-fed Holstein calves differentially affect pancreatic growth and development.  相似文献   

4.
This work aimed first to compare 2 diets differing in their percentage of concentrate [low (LO): 30% concentrate vs. High (HI): 60% concentrate] by measuring simultaneously feeding behavior, rumen parameters, blood and plasma parameters, and milk yield and composition in 8 mid-lactation goats. The second aim was to study the interrelationships between these variables and to analyze the between-animal variability to better understand the between-animal differences in acidosis susceptibility. All of the animals received the 2 diets ad libitum as total mixed ration according to a crossover design of two 4-wk periods. Mean daily DMI was similar between the 2 diets but the variability was higher for the HI than for the LO diet. Goats produced more milk when fed the HI diet compared with the LO diet but with a lower fat:protein ratio (0.81 vs. 0.99). They ate more rapidly the HI than the LO diet but stopped eating sooner after the afternoon feed allowance, and spent less time chewing. The increase in concentrate percentage modified rumen parameters: the pH and acetate:propionate ratio decreased and total VFA, ammonia, and soluble carbohydrate concentrations increased. Hematocrit, plasma NEFA, and blood K and Ca concentrations decreased but glycemia and uremia increased. Other parameters were not modified: milk fat content, blood pH, and bicarbonate and Na concentrations. A large between-animal variability was detected for all the measured parameters, especially for feeding behavior, with important consequences on rumen and blood parameters. This work confirmed the effects of a high percentage of concentrate on feeding behavior, rumen and blood parameters, and milk production, and some known relationships such as the positive link between rumen pH and chewing index. It also pointed out other relationships between parameters seldom measured at the same time, such as rumen redox potential or blood pH and chewing index, or the negative link between blood and rumen pH. When the animals spent a lot of time chewing, they probably produced a lot of saliva that buffered the rumen pH and prevented them from suffering from subacute ruminal acidosis. However, they used part of their blood bicarbonates reserve, which might have induced metabolic acidosis, as rumen and blood pH were inversely related. This could explain why some animals suffer from acidosis and others do not in a herd receiving the same diet, and why some animals seem to suffer more from subacute ruminal acidosis and others from metabolic acidosis.  相似文献   

5.
The effects of grain, fructose, and histidine on ruminal pH and fermentation products were studied in dairy cattle during an induced subacute acidosis protocol. Thirty Holstein heifers were randomly allocated to 5 treatment groups: (1) control (no grain); (2) grain [fed at a crushed triticale dry matter intake (DMI) of 1.2% of body weight (BW)]; (3) grain (0.8% of BW DMI)+fructose (0.4% of BW DMI); (4) grain (1.2% of BW DMI)+histidine (6 g/head); and (5) grain (0.8% of BW DMI)+fructose (0.4% of BW DMI)+histidine (6 g/head) in a partial factorial arrangement. Heifers were fed 1 kg of grain daily with ad libitum access to ryegrass silage and alfalfa hay for 10 d. Feed was withheld for 14 h before challenge day, on which heifers were fed 200 g of alfalfa hay and then the treatment diets immediately thereafter. Rumen samples were collected 5 min after diet ingestion, 60 min later, and at 3 subsequent 50-min intervals. Grain decreased ruminal pH and increased ammonia, total volatile fatty acid (VFA), acetate, butyrate, propionate, and valerate concentrations compared with controls. The addition of grain had no effect on ruminal D- and L-lactate concentrations. Fructose markedly decreased ruminal pH and markedly increased D- and L-lactate concentrations. Fructose increased total VFA and butyrate and decreased valerate concentrations. Although histidine did not have a marked effect on ruminal fermentation, increased concentrations of histamine were observed following feeding. This study demonstrates that the substitution of some grain for fructose can lower ruminal pH and increase VFA and lactate concentrations, warranting further investigation into the role of sugars on the risk of acidosis in dairy cattle.  相似文献   

6.
《Journal of dairy science》2022,105(2):1199-1210
Dairy cows commonly undergo negative Ca balance accompanied by hypocalcemia after parturition. A negative dietary cation-anion difference (DCAD) strategy has been used prepartum to improve periparturient Ca homeostasis. Our objective was to determine the influence of a negative DCAD diet with different amounts of dietary Ca on the blood acid-base balance, blood gases, and metabolic adaptation to lactation. Multiparous Holstein cows (n = 81) were blocked into 1 of 3 dietary treatments from 252 d of gestation until parturition: (1) positive DCAD diet and low Ca (CON; containing +6.0 mEq/100 g DM, 0.4% DM Ca); (2) negative DCAD diet and low Ca (ND; ?24.0 mEq/100 g DM, 0.4% DM Ca); or (3) negative DCAD diet plus high Ca supplementation (NDCA; ?24.1 mEq/100 g DM, 2.0% DM Ca). There were 28, 27, and 26 cows for CON, ND, and NDCA, respectively. Whole blood was sampled at 0, 24, 48, and 96 h after calving for immediate determination of blood acid-base status and blood gases. Serum samples collected at ?21, ?14, ?7, ?4, ?2, ?1, at calving, 1, 2, 4, 7, 14, 21, and 28 d relative to parturition were analyzed for metabolic components. Results indicated that cows fed ND or NDCA had lower blood pH at calving but greater pH at 24 h after calving compared with CON. Blood bicarbonate, base excess, and total CO2 (tCO2) concentrations of cows in ND and NDCA groups were less than those of cows in CON at calving but became greater from 24 to 96 h postpartum. The NDCA cows had lower blood bicarbonate, base excess, and tCO2 at 48 h and greater partial pressure of oxygen after calving compared with ND. Cows fed ND or NDCA diets had lower serum glucose concentrations than CON cows before calving but no differences were observed postpartum. Serum concentrations of total protein and albumin were greater prepartum for cows in ND and NDCA groups than for those in CON. Postpartum serum urea N and albumin concentrations tended to be higher for ND and NDCA cows. Cows fed ND or NDCA diets had elevated serum total cholesterol concentration prepartum. During the postpartum period, triglycerides and NEFA of cows fed ND or NDCA diets tended to be lower than those of CON. Cows fed the NDCA diet had greater postpartum total cholesterol in serum and lower NEFA concentration at calving than ND. In conclusion, feeding a prepartum negative DCAD diet altered blood acid-base balance and induced metabolic acidosis at calving, and improved protein and lipid metabolism. Supplementation of high Ca in the negative DCAD diet prepartum was more favorable to metabolic adaptation to lactation in dairy cows than the negative DCAD diet with low Ca.  相似文献   

7.
The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects jejunal protein synthesis and whether effects may be ameliorated by supplementation of those AA known to be at lower concentrations in soy protein isolate than in CN. Goat kids (14 d) were fed comparable milk protein diets, in which 50% of the crude protein was CN (CAS), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n = 8 per group). On d 42, plasma concentrations of protein, urea, and AA were measured before and after morning feeding. In the morning of d 43, [15N]RNA from yeast [13 mg/kg of body weight (BW)] was given with the diet to measure the reutilization of dietary RNA precursors for mucosal RNA biosynthesis. Four hours later, an oral dose of l-[1-13C]leucine (180 mg/kg of BW) was administered and blood samples were collected between −15 and +45 min relative to tracer administration for analysis of plasma 13C α-ketoisocaproic acid and 13C recovery in blood CO2. Kids were killed 60 min after the tracer application, and jejunal tissue was collected to determine mucosal morphology, cell proliferation, enzyme activities, RNA synthesis, and fractional protein synthesis rate. Plasma protein concentrations were higher in CAS than in SPI and SPIA. Plasma concentrations of Thr were higher in CAS than in SPI and SPIA, and those of Met were lower in SPI than in CAS and SPIA. In mid-jejunum, villus circumferences were higher in CAS than in SPI and SPIA, and villus height and villus height:crypt depth ratio were higher in CAS than in SPI. In mid-jejunum, mucosal protein concentrations were higher in CAS than in SPI and SPIA and mucosal activities of aminopeptidase N tended to be higher in CAS than in SPI, whereas activities of dipeptidyl peptidase IV tended to be lower in SPI than in SPIA. Activities of 5′ nucleotidase and xanthine oxidase were lower in CAS than in SPI. The 13C recovery in blood CO2 tended to be higher in SPI than in CAS. In mid-jejunum, 15N enrichment of RNA tended to be higher in CAS than in SPI, and 13C enrichment of protein-bound Leu was higher in SPI than in CAS. In mid-jejunum, the fractional protein synthesis rate tended to be higher in SPI than in CAS. Our results revealed changes in intestinal growth after soy protein feeding that were associated with effects on intestinal RNA and protein synthesis but that were not ameliorated by AA supplementation.  相似文献   

8.
Residual feed intake (RFI) is a candidate trait for feed efficiency in dairy cattle. We investigated the influence of lactation stage on the effect of energy sinks in defining RFI and the genetic parameters for RFI across lactation stages for primiparous dairy cattle. Our analysis included 747 primiparous Holstein cows, each with recordings on dry matter intake (DMI), milk yield, milk composition, and body weight (BW) over 44 lactation weeks. For each individual cow, energy-corrected milk (ECM), metabolic BW (MBW), and change in BW (ΔBW) were calculated in each week of lactation and were taken as energy sinks when defining RFI. Two RFI models were considered in the analyses; RFI model [1] was a 1-step RFI model with constant partial regression coefficients of DMI on energy sinks (ECM, MBW, and ΔBW) over lactation. In RFI model [2], data from 44 lactation weeks were divided into 11 consecutive lactation periods of 4 wk in length. The RFI model [2] was identical to model [1] except that period-specific partial regressions of DMI on ECM, MBW, and ΔBW in each lactation period were allowed across lactation. We estimated genetic parameters for RFI across lactation by both models using a random regression method. Using RFI model [2], we estimated the period-specific effects of ECM, MBW, and ΔBW on DMI in all lactation periods. Based on results from RFI model [2], the partial regression coefficients of DMI on ECM, MBW, and ΔBW differed across lactation in RFI. Constant partial regression coefficients of DMI on energy sinks over lactation was not always sufficient to account for the effects across lactation and tended to give roughly average information from all period-specific effects. Heritability for RFI over 44 lactation weeks ranged from 0.10 to 0.29 in model [1] and from 0.10 to 0.23 in model [2]. Genetic variance and heritability estimates for RFI from model [2] tended to be slightly lower and more stable across lactation than those from model [1]. In both models, RFI was genetically different over lactation, especially between early and later lactation stages. Genetic correlation estimates for RFI between early and later lactation tended to be higher when using model [2] compared with model [1]. In conclusion, partial regression coefficients of DMI on energy sinks differed across lactation when modeling RFI. Neglect of lactation stage when defining RFI could affect the assessment of RFI and the estimation of genetic parameters for RFI across lactation.  相似文献   

9.
Five treatment diets varying in crude protein (CP) and rumen undegradable protein (RUP) were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Diets were fed as a total mixed ration to 65 Holstein cows that were either primiparous (n = 28) or multiparous (n = 37) from 21 to 120 d in milk to determine effects on lactation and nitrogen utilization. Crude protein % and calculated RUP (% of CP) of diets [on a dry matter (DM) basis] were: 1) 19.4, 40 (HPMU), 2) 16.5, 34 (LPLU), 3) 16.8, 40 (LPMU), 4) 16.8, 46 (LPHU), 5) 17.2, 43 (LPHU + UREA), which is the result of adding 0.4% of the diet DM as urea to LPHU. The corn silage-based treatment diets contained an average of 24% acid detergent fiber and 1.6 Mcal/kg net energy of lactation. Milk urea nitrogen (MUN) concentrations and body weights (BW) were used to calculate predicted amounts of urinary nitrogen (N) using the relationship: urinary N (g/d) = 0.0259 x BW (kg) x MUN (mg/dl). Cows fed HPMU had greater CP and RUP intakes, which resulted in higher concentrations of plasma urea nitrogen, rumen ammonia, MUN, and predicted urinary N. Milk yield, fat yield, fat percent, protein yield, and protein percent were not significantly different among treatments. Parity primarily affected parameters that were related to body size and not measurements of N utilization. The interaction of treatment and parity was not significant for any measurements taken. In this study, cows fed LPHU had significantly lower MUN and predicted urinary N without limiting production. These results demonstrate the potential to optimize milk production while minimizing N excretion in lactating dairy cattle.  相似文献   

10.
Three ruminally cannulated Holstein cows were fed total mixed diets of hay crop silage and concentrate (30:70, 50:50, 70:30, 100:0) to evaluate effects of sodium bicarbonate supplements equivalent to 0, .4, and .7% of total ration dry matter (0, 68, and 114 g/d). Yields of milk, fat-corrected milk, fat, protein, and solids-not-fat, percentages of milk protein and solids-not-fat, and efficiency of production of fat-corrected milk declined with decreasing concentrate proportion. Buffer supplementation reduced milk fat percentage and milk yield was greater with 68 g/d sodium bicarbonate than with 114 g/d. Digestibilities of dry matter, organic matter, gross energy, cell solubles, and crude protein declined with decreasing proportion of concentrate while cellulose digestibility increased linearly. The proportion of dietary nitrogen transferred to milk decreased linearly with decreasing proportion of concentrate and sodium bicarbonate increased this transfer with the 70% concentrate diet. Sodium bicarbonate increased ruminal pH and acetate proportion while decreasing ammonia concentration. Acetate:propionate ratio was decreased by sodium bicarbonate addition to the 70% concentrate diet. High concentrate diets with hay crop silage may require higher amounts of buffers to influence production.  相似文献   

11.
W Heine  H J Stolpe  M Tiess  W Wutzke 《Die Nahrung》1987,31(5-6):575-578
The virtual importance of the urea circuit is not clear. After a 3 to 21 day application of 100 mg [15N]-urea/l in 15 infants a [15N]-excess value of 0.06 in serum protein could be proven. Taking as a basis a protein content of 11.4% of the body mass and a regular distribution of the [15N] within the body one can calculate a retention of the urea nitrogen in the protein pool of 40.4% of the intake. Taking in account an amount of 11.4% urea nitrogen from the total nitrogen in mother's milk then the amount of urea nitrogen from the net protein accumulation comes to 6.5 (3.1-11.8)%.  相似文献   

12.
Preterm infants fed commercially available preterm formula usually show a high renal net acid excretion (NAE) introgenously, further decreasing the already low age-specific functional renal reserve capacity of acid excretion. Preterm infants fed formulas are therefore at considerable risk of spontaneously developing incipient, and occasionally manifest, late metabolic acidosis characterized by e.g., impaired growth. A physiologically based and empirically adjusted algorithm is presented to estimate the effect of electrolyte and protein content of a formula on the resulting urinary excretion of ions, thus allowing the average renal NAE of preterm infants fed this formula to be calculated. The algorithm is based on a literature review concerning physiological key factors and the complete data sets of protein and minerals intake and urinary ions excretion of 20 groups of preterm infants. The algorithm of the proposed model could prove to be a useful tool in the design of new formulas for preterm infants with a low renal NAE resulting in improved growth due to the prevention of incipient and manifest late metabolic acidosis.  相似文献   

13.
Manasan is an adapted formula for infants on the basis of cow's milk simulating the mode of action of human milk on faeces-pH and faeces microflora. In two temporally separated tests the effect of Manasan-feeding on faeces-pH, faeces flora, and acid-base-homeostasis was controlled and compared with the effect of human milk and Ki-Na-formula. With Manasan fed up from birth or following breast-feeding faeces-pH was to be found in an acid range, clearly. With Ki-Na the faeces-pH was situated in the neutral range. With Manasan the bacteria flora revealed a noteworthy decrease in the number of Bacteroides germs achieving a non-putrefactive milieu. Concerning the acid-base-homeostasis as with human milk so with Manasan late metabolic acidosis were to meet rarely. The experiments revealed that in important parameters, particularly with microecological signs, Manasan is comparable with human milk.  相似文献   

14.
Twenty-four halothane positive (HP) pigs received ammonium chloride (8 g/L), sodium bicarbonate (12.6 g/L) or water (HP control) ad libitum for 4 days and were then slaughtered. Hams from HP animals were pale, soft and exudative (PSE) and of inferior processing quality. Ammonium chloride induced a metabolic acidosis which further impaired cured ham quality (greater thaw purge, lower juiciness scores and less uniform slice appearance than comparable hams from control or bicarbonate treated HP hogs). Blood pH, carbonate and chloride concentration (day 3) were related to cured ham quality, indicating that acid-base balance may influence subsequent meat quality. Use of an alkaline salt provided little protection against PSE.  相似文献   

15.
《Journal of dairy science》2019,102(7):6174-6179
We aimed to evaluate the use of a live-yeast product as a means to attenuate plausible nutritional disturbances when feeding relatively low-forage diets containing rapidly fermentable carbohydrates (i.e., wheat) to high-producing cows in early to mid lactation. Eight primiparous [mean ± SD; 569 ± 35 kg of body weight (BW) and 80 ± 29 d in milk (DIM) at the beginning of the experiment] and 16 multiparous (665 ± 67 kg of BW and 64 ± 10 DIM at the beginning of the experiment) Holstein cows were blocked by parity and DIM, and randomly assigned to 1 of 2 diets (control vs. yeast) for a 12-wk-long period according to randomized complete block design. The formulated diets contained 36.7% corn silage, 8.3% alfalfa hay, and 55% concentrate. The yeast diet was formulated to provide approximately 5.4 × 1011 cfu/d of Saccharomyces cerevisiae (BeneSacc; Global Nutritech Biotechnology LLC, Richmond, VA). Total-tract nutrient digestibility was estimated using 240-h undigested neutral detergent fiber (NDF) as an internal marker. Dry matter intake, milk yield, and milk component concentrations and yields were analyzed using repeated measures. The statistical model for these variables included the effects of block, treatment, the block by treatment interaction, week, the treatment by week interaction, and the random residual error. The statistical model for analyzing BW gain, body condition score gain, and dry matter and nutrient digestibilities included the effects of block, treatment, and the random residual error. Supplementing live yeast to lactating dairy cows did not affect dry matter intake (26.0 kg/d), milk yield (48.1 kg/d), milk fat concentration (3.61%), milk fat yield (1.72 kg/d), milk protein concentration (2.96%), milk protein yield (1.43 kg/d), milk lactose concentration (4.84%), milk lactose yield (2.35 kg/d), milk urea nitrogen (7.99 mg/dL), body weight gain (0.62 kg/d), and body condition score gain (0.02 units; all averages of the 2 treatments). The digestibilities of dry matter (70.2%), crude protein (71.4%), NDF (36.4%), and starch (99.8%) were not affected by treatments. In conclusion, the supplementation of the live yeast did not affect production performance and nutrient digestibility of high-producing dairy cows. A potential interaction between live-yeast supplementation and NDF passage rate, which may have hindered the beneficial effects of live-yeast supplementation on production performance and nutrient utilization, deserves further research.  相似文献   

16.
The objective of this study was to evaluate the use of a live-yeast product when feeding relatively high-forage diets to high-producing cows in mid lactation. Eight primiparous [607 ± 43 kg of body weight (BW) and 130 ± 16 d in milk (DIM) at the beginning of the experiment] and 16 multiparous (706 ± 63 kg of BW and 137 ± 22 DIM at the beginning of the experiment) Holstein cows were blocked by parity and DIM, and randomly assigned to 1 of 2 diets (control vs. yeast) for a 12-wk period according to a randomized complete block design. The formulated diets contained 50.4% corn silage, 10.4% alfalfa hay, and 39.2% concentrate. The yeast diet was formulated to provide approximately 5.4 × 1011 cfu/d of Saccharomyces cerevisiae (BeneSacc; Global Nutritech Biotechnology LLC, Richmond, VA). Total-tract nutrient digestibility was estimated using 240-h undigested neutral detergent fiber (NDF) as an internal marker. Supplementing live yeast to lactating dairy cows did not affect dry matter intake (25.0 kg/d), milk yield (38.6 kg/d), milk fat concentration (4.78%), milk fat yield (1.83 kg/d), milk protein concentration (3.09%), milk protein yield (1.18 kg/d), milk lactose concentration (4.79%), milk lactose yield (1.84 kg/d), BW gain (?0.05 kg/d), or body condition score gain (0.16 units). The digestibility of dry matter was greater for the control treatment than for the yeast treatment (69.3 and 67.1%, respectively), but the digestibilities of crude protein (61.5%), NDF (40.5%), and starch (98.6%) were not affected by treatment. In conclusion, supplementation of live yeast did not affect production performance or nutrient digestibility of high-producing cows in mid lactation. The reasons for the lack of effect are not clear, but an evaluation of interactions between yeast and rumen buffer supplementation is warranted.  相似文献   

17.
Sixty calves were assigned to a comparative slaughter study to determine the changes in composition of milk replacer-fed Holstein bull calves from birth to 105-kg body weight (BW). Six calves were slaughtered on day of birth and served as a baseline for comparison of compositional changes. Fifty-four calves were assigned to one of three treatments (18 calves per treatment). Calves were fed milk replacer containing 30% crude protein (CP) and 20% fat. Target growth rates for treatments 1, 2, and 3 were 500, 950, and 1400 g/d, respectively. Six calves from each treatment were slaughtered and analyzed for energy, nitrogen, ether extract, and ash when they reached 65, 85 and 105 kg of BW. Actual daily gains from birth to slaughter were 560, 973, and 1100 g, and net deposition of CP and fat were 140 and 44, 204 and 154, and 247 and 161 g/d for treatments 1, 2, and 3, respectively. Results were used to develop equations to predict retained energy [retained energy = (empty BW(0.223)) x (empty BW gain(1.32))], and retained protein, [retained protein = (184 x empty BW gain (kilograms/d)) + (17.2 x (retained energy)/empty BW gain] where retained energy is in Mcal/d, retained protein is in g/d, and empty BW and gain are in kilograms. The composition of gain observed was compared to predictions from the 1989 Dairy NRC and 1996 Beef NRC equations and demonstrated the equations do not represent the composition of gain in calves of this weight.  相似文献   

18.
《Journal of dairy science》2022,105(9):7842-7860
To evaluate the effects of heat stress (HS) conditions and dietary organic acid and pure botanical (OA/PB) supplementation on gut permeability and milk production, we enrolled 46 multiparous Holstein cows [208 ± 4.65 dry matter intake (DMI; mean ± SD), 3.0 ± 0.42 lactation, 122 ± 4.92 d pregnant, and 39.2 ± 0.26 kg of milk yield] in a study with a completely randomized design. Cows were assigned to 1 of 4 groups: thermoneutral conditions (TN-Con, n = 12), HS conditions (HS-Con, n = 12), thermoneutral conditions pair-fed to HS-Con (TN-PF, n = 12), or HS supplemented with OA/PB [75 mg/kg of body weight (BW); 25% citric acid, 16.7% sorbic acid, 1.7% thymol, 1.0% vanillin, and 55.6% triglyceride; HS-OAPB, n = 10]. Supplements were delivered twice daily by top-dress; all cows not supplemented with OA/PB received an equivalent amount of the triglyceride used for microencapsulation of the OA/PB supplement as a top-dress. Cows were maintained in thermoneutrality [temperature-humidity index (THI) = 68] during a 7-d acclimation and covariate period. Thereafter, cows remained in thermoneutral conditions or were moved to HS conditions (THI: diurnal change 74 to 82) for 14 d. Cows were milked twice daily. Clinical assessments and BW were recorded, blood was sampled, and gastrointestinal permeability measurements were repeatedly evaluated. The mixed model included fixed effects of treatment, time, and their interaction. Rectal and skin temperatures and respiration rates were greater in HS-Con and HS-OAPB relative to TN-Con. Dry matter intake, water intake, and yields of energy-corrected milk (ECM), protein, and lactose were lower in HS-Con relative to HS-OAPB. Nitrogen efficiency was improved in HS-OAPB relative to HS-Con. Compared with TN-Con and TN-PF, milk yield and ECM were lower in HS-Con cows. Total-tract gastrointestinal permeability measured at d 3 of treatment was greater in HS-Con relative to TN-Con or TN-PF. Plasma total fatty acid concentrations were reduced, whereas insulin concentrations were increased in HS-Con relative to TN-PF. We conclude that exposure to a heat-stress environment increases total-tract gastrointestinal permeability. This study highlights important mechanisms that might account for milk production losses caused by heat stress, independent of changes in DMI. Our observations also suggest that dietary supplementation of OA/PB is a means to partly restore ECM production and improve nitrogen efficiency in dairy cattle experiencing heat stress.  相似文献   

19.
The impact of supplemental energy on nutrient utilization, fiber digestion, rumen fermentation, and lactation performance was evaluated in dairy cows grazing pastures composed of brome, orchardgrass, red clover, and alfalfa. Three amounts [0, 5, and 10 kg dry matter (DM)/d] of ground dry shelled corn-based concentrate were supplemented to nine rumen cannulated Holstein cows in a 3 x 3 Latin square replicated three times. Cows were on average 84+/-13 d in milk and producing 41.6+/-5.9 kg of milk/d at the beginning of the study. An increase in amounts of concentrate in the diets was associated with an increase in milk production, solids-corrected milk, and concentrations of milk protein and SNF. Milk fat percentage and milk urea nitrogen concentration decreased linearly with supplementation. Milk production and protein percentage were 21.8, 26.8, and 30.4 kg/d, and 2.85, 2.95, and 3.05% for the increasing levels of concentrate, respectively. Intake and digestibility of DM and organic matter (OM) increased as grain supplementation increased. Ruminal pH and total volatile fatty acid concentration (VFA) were not affected by supplementation or the amount of concentrate. Ruminal ammonia concentration was reduced by supplementation, presumably due to a decrease in N intake and greater use of ammonia-N for rumen microbial protein synthesis. Rumen fermentation varied throughout the day, with lower mean pH and higher VFA concentrations at night. Supplementation increased total OM intake, decreased forage OM intake, and increased the proportion of OM that was digested in the intestines. Total DM intake by grazing dairy cows can be increased using ground dry shelled corn-based concentrate without causing negative effects on forage digestion.  相似文献   

20.
以碳酸氢铵作为氮源,研究在分批培养及流加培养条件下其对螺旋藻生长的影响。结果表明:当培养液中碳酸氢铵浓度小于5mmol/L时,螺旋藻生长正常;碳酸氢铵浓度超过5mmol/L时,螺旋藻生长受到抑制,解体死亡。采用生物量反馈补料的流加策略可以使培养液中螺旋藻生物量达到3.08g/L,产率达到0.26g/(L ·d),藻体中蛋白质及叶绿素含量分别达到65.06%和13.37mg/g,结果证实了碳酸氢铵为氮源高密度培养螺旋藻的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号