首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties of crystals are evaluated by mechanical testing which reveals certain mechanical characteristics. The fastest and simplest type of mechanical testing is hardness measurement. The Vickers and Knoop microhardness studies have been carried out on 4-methoxy benzaldehyde N-methyl 4-stilbazolium tosylate crystals grown by a slow evaporation technique over a load range of 10-100 g. The Vickers hardness number (Hv) and the Knoop microhardness number (Hk) were found to increase with the increase in load. The Meyer's index number ‘n’ was calculated from Hv. The Young's modulus was calculated using the Knoop hardness values. Hardness anisotropy has been observed in accordance with the orientation of the crystal.  相似文献   

2.
Single crystals of Diaqua Bisglycine Cobaltous Chloride (DBGCoCl) have been synthesized and grown by slow evaporation method. Grown crystals were subjected to FTIR and XRD studies for structural confirmation. The DBGCoCl crystallizes in the monoclinic system with the space group P21/c. The UV–vis spectrum for the pure glycine as well the cobalt chelated glycine have been recorded. The lower cutoff wavelength observed from the UV–vis spectrum is found to decrease by the chelation of cobalt with glycine and this leads to an increase in the band gap of the compound from 3.13 eV to 4.91 eV. The optical constants were calculated and illustrated graphically. Mechanical hardness of the grown crystal DBGCoCl was studied and Vickers hardness number was calculated. The work hardening coefficient (n) was determined to be 1.365 and the stiffness constants for different loads were calculated and reported. The thermal stability of the grown crystal has been studied using TGA and DTA. The crystal is thermally stable up to 116.86 °C.  相似文献   

3.
Vickers and Knoop microhardness tests were carried out on grown L-alanine single crystals by slow evaporation technique over a load range of 10–50 g on selected broad (2 0 3) plane. Vickers (H v ) and Knoop (H k ) microhardness for the above loads were found to be in the range of 60–71 kg/mm2 and 35–47 kg/mm2, respectively. Vickers microhardness number (H v ) and Knoop microhardness number (H k ) were found to increase with increasing load. Meyer’s index number (n) calculated from H v shows that the material belongs to the soft material category. Using Wooster’s empirical relation, the elastic stiffness constant (c 11) was calculated from Vickers hardness values. Young’s modulus was calculated using Knoop hardness values. Hardness anisotropy has been observed in accordance with the orientation of the crystal.  相似文献   

4.

Two-photon absorption induced optical limiting action was demonstrated in cytosinium benzoate (CB) under nanosecond laser (532 nm, 9 ns, and 10 Hz) excitation. Intensity dependent open aperture Z-scan experiment exposed the presence of reverse saturable absorption ascribed due to sequential two-photon absorption. Initially CB single crystals were grown at room temperature by slow evaporation solution technique. Single crystal XRD shows that CB belongs to monoclinic crystal system with P21/c space group. Fourier Transform Infrared spectrum was recorded to identify the presence of functional groups. Thermal studies shows that the crystal is stable upto 168 °C. Vickers microhardness studies confirm that the grown crystal was belongs to soft material category. Etching study shows linear rectangular etch patterns (5 s) and well defined stacking planes (10 s) for water etchant. Optical studies demonstrate that CB crystal possess lower cut-off (287 nm) and moderate linear transmittance in visible region. The optical energy band gap of CB crystal was estimated from photoluminescence studies as 3.1 eV. CB with higher two-photon absorption coefficient (1.26?×?10–10 m/W) and lower onset limiting threshold (1.92?×?1012 W/m2) can be a potential candidate for developing laser safety devices under nanosecond green laser excitation regime.

  相似文献   

5.
《Materials Letters》2007,61(23-24):4485-4488
The Vickers and Knoop microhardness studies were carried out on the (001) face of 4-Dimethylamino-N-methyl 4-Stilbazolium Tosylate (DAST) crystals grown by the slope nucleation technique. The Vickers microhardness number (Hv) and the Knoop microhardness number (Hk) were found to dwindle with increasing load. The Meyer's index number (n) and hardness were calculated from Hv. The fracture toughness, brittle index and yield strength were calculated. The Young's modulus was calculated using the Knoop hardness value.  相似文献   

6.
A new potentially useful nonlinear optical organic material, 1-(5-chlorothiophen-2-yl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one, has been synthesized and grown as a high-quality single crystal by the slow evaporation technique. The grown crystals were characterized by FT-IR, NMR, thermal analysis, and UV–visible spectroscopy. The material is thermally stabile up to 111 °C. The mechanical property of the grown crystals was studied using Vickers microhardness tester and the load dependence hardness was observed. The third order nonlinear optical properties of the material such as real and imaginary part of χ(3), nonlinear absorption coefficient and nonlinear refractive index were determined using nanosecond laser pulses at 532 nm wavelength by employing Z-scan technique. The nonlinear refractive index is found to be of the order of 10−11 cm2 W−1. The magnitude of third order susceptibility is of the order of 10−13 esu. The observed increase in the third order nonlinearity in these molecules clearly indicates the electronic origin. The compounds exhibit good optical limiting at 532 nm. The best optical limiting behavior of this molecule is due to the substituted strong electron donor.  相似文献   

7.
The crystal l-threonine formate, an organic NLO crystal was synthesized from aqueous solution by slow evaporation technique. The grown crystal surface has been analyzed by scanning electron microscopy (SEM), chemical etching and atomic force microscopy (AFM). SEM analysis reveals pyramidal shaped minute crystallites on the growth surface. The etching study indicates the occurrence of etch pit patterns like striations and step like pattern. The mechanical properties of LTF crystals were evaluated by mechanical testing which reveals certain mechanical characteristics like elastic stiffness constant (C11) and young's modulus (E). The Vickers and Knoop microhardness studies have been carried out on LTF crystals over a range of 10–50 g. Hardness anisotropy has been observed in accordance with the orientation of the crystal. AFM image shows major hillock on growth surface. The second harmonic generation (SHG) efficiency has been tested by the Kurtz powder technique using Nd:YAG laser and found to be about 1.21 times in comparison with standard potassium dihydrogen phosphate (KDP) crystals.  相似文献   

8.
l-Asparagine thiourea monohydrate (LATM) single crystal has been successfully grown (size 15 × 10 × 3 mm3) by slow evaporation solution growth technique. To the best of our knowledge this is the first report to the literature. The grown crystal was characterized by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopic analysis. The UV-Vis transmittance spectrum shows that the material has wide optical transparency in the entire visible region. The relative second harmonic generation was confirmed by Kurtz powder technique. The mechanical properties have been studied using Vickers microhardness tester. The birefringence of the crystal was measured in the visible region and it was found to vary with the wavelength.  相似文献   

9.
Ti–10Mo alloy powder were compressed by high velocity compaction (HVC) in a cylinderical form of height/diameter (h/d) in die 0.56 (sample A) and 0.8 (sample B). Compactions were conducted to determine the effect of impact force per unit area of powder filled in die for densification and mechanical properties of Ti–10Mo samples. The micro structural characterization of samples were performed by scanning electron microscope (SEM). The mechanical properties of the compressed samples such as Vickers hardness, bending strength, and tensile strength were measured. Experimental results showed that the density and mechanical properties of sample A and sample B increased gradually with an increase in impact force and decreased with an increase in height/diameter ratio. The relative green density for sample A reached up to 90.86% at impact force per unit area 1615 N mm−2. For sample B, it reached 79.71% at impact force per unit area 1131 N mm−2. The sintered sample A exhibited a maximum relative density of 99.14%, Vickers hardness of 387 HV, bending strength of 2090.72 MPa, and tensile strength of 749.82 MPa. Sample B revealed a maximum relative sintered density of 97.73%, Vickers hardness of 376 HV, bending strength 1259.94 MPa and tensile strength 450.25 MPa. The spring back of the samples decreased with an increase in impact force.  相似文献   

10.
The organic nonlinear optical material ammonium d,l-tartrate single crystal has been successfully grown by slow evaporation solution technique (SEST). The grown crystals were characterized by single crystal XRD and the lattice parameters have been confirmed. The structural perfection of the grown crystal was analyzed by high-resolution X-ray diffraction measurement. The optical transmittance spectrum shows that the material has a good optical transparency in the entire visible region with the UV cut-off wavelength at 234 nm. Thermogravimetric and differential scanning calorimetric measurements were performed to study the thermal properties of the grown crystal. Chemical etching studies were attempted to determine the dislocation density of the grown crystal. Mechanical behavior was assessed using Vickers hardness testing carried out on (0 0 1) crystallographic plane. The Kurtz–Perry powder SHG technique confirms the NLO property of the grown crystal and the efficiency of AMT crystal was found to be 1.3 times that of standard KDP crystal.  相似文献   

11.
Bis nicotinamidium bis D-tartrate 1.25-hydrate single crystals have been grown by slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallizes in monoclinic system with space group P21. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal is free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. The second harmonic generation efficiency of the grown crystal has been checked and its value is 1.24 times that of potassium dihydrogen phosphate. The surface laser damage threshold for the crystal has been analyzed and its value is 0.644 GW/cm2. Piezoelectric d33 co-efficient for the crystal has been examined and its value is 29.8 pC/N.  相似文献   

12.
Lithium l-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10−1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 °C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole–Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100–200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4° in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm−2 and 4.2 GW cm−2 at 1064 nm and 532 nm radiation respectively.  相似文献   

13.
Nd: NaLu(WO4)2 single crystals have been grown by the top seeded solution growth (TSSG) method. The peaks shown in the X-ray powder diffraction pattern were assigned. The crystal belongs to the space group of I41/a and the unit-cell parameters were calculated as a = b = 5.168 Å, c = 11.174 Å, V = 298.46 Å3. It is a tetragonal scheelite-like single crystal. The DSC (differential scanning calorimeter) curve proved that the as-grown crystal had a glass transition at the temperature range of 733.8 °C-781.4 °C which was lower than its melting point at 1149.3 °C. The absorption and fluorescence spectra were measured at room temperature.  相似文献   

14.

The 0.5 and 1 mol% thiourea “mixed” potassium dihydrogen phosphate (KDP) crystals have been developed by conventional slow solution evaporation method. The crystallographic parameters of grown crystals have been determined by employing single crystal X-ray diffraction technique. The functional groups of grown crystals were successfully identified by means of FTIR spectral analysis. The optical transmittance is 79%, 84%, and 89% for KDP, 0.5 mol thiourea mixed KDP, and 1 mol thiourea mixed KDP crystal. The energy band gap (Eg) of KDP, 0.5 mol thiourea mixed KDP, and 1 mol thiourea mixed KDP crystal is 3.71 eV, 3.61 eV, and 3.75 eV, respectively. The Kurtz–Perry test has been employed to determine the SHG efficiency and SHG efficiency of 0.5 and 1 mol thiourea mixed KDP crystal is 2.09 and 2.22 times superior to KDP crystal. Effect of thiourea mixing on hardness properties of KDP crystal have been scrutinized using the Vickers microhardness studies. The frequency dependent dielectric behavior of grown crystals has been analyzed at room temperature.

  相似文献   

15.
The potential nonlinear optical material of Terbium (Tb3+) ion doped l-Histidine hydrochloride monohydrate (LHHC) single crystals were successfully grown. Tb3+:LHHC crystals of 7 mm × 5 mm × 3 mm and 59 mm length and 15 mm diameter have been grown by the slow solvent evaporation and Sankaranarayanan-Ramasamy (SR) techniques respectively. The grown crystals were characterized by single crystal X-ray diffraction analysis to confirm the crystalline structure and morphology. High resolution X-ray diffraction (HRXRD) studies revealed that the SR grown sample shows relatively good crystalline nature with 9″ full-width at half-maximum (FWHM) for the diffraction curve. Functional groups were identified by Fourier transform infra-red spectroscopy (FTIR). The optical transparency and band gaps of grown crystals were measured by UV–Vis spectroscopy. Thermogravimetric and differential thermal analysis (TG/DTA) studies reveal that the crystal was thermally stable up to 155 °C in SR grown crystal. Surface morphology of the growth plane was observed using scanning electron microscopy (SEM). The incorporation of Tb ion was estimated by EDAX. The frequency-dependent dielectric properties of the crystals were carried out for different temperatures. Vickers hardness study carried out on (1 0 0) face at room temperature shows increased hardness of the SR method grown crystal. Second harmonic generation efficiency of SEST and SR grown crystals are 3.2 and 3.5 times greater than that of pure KDP. The Photoluminescence (PL) studies of Tb3+ ions result from the radiative intra-configurational f-f transitions that occur from the 5D4 excited state to the 7Fj (j = 6, 5, 4, 3) ground states. The decay curve of the 5D4 level of emission was observed with a long life time of 319.2041 μs for the SR grown Tb3+:LHHC crystal.  相似文献   

16.
The novel non-linear semiorganic Bisglycine Lithium Nitrate (BGLiN) single crystals were grown by slow evaporation technique. The structural analysis revealed that it belongs to non-centrosymmetric orthorhombic structure. The presence of various functional groups in the grown crystal was confirmed by FTIR and Raman analysis. Surface morphology of the grown crystal was studied by scanning electron microscopy. The optical studies show that crystal has good transmittance (more than 80%) in the entire visible region and a wide band gap (5.17 eV). The optical constants such as extinction coefficient (K), the reflectance (R) and refractive index (n) as a function of photon energy were calculated from the optical measurements. With the help of these optical constants the electric susceptibility (χc) and both the real (εr) and imaginary (εi) parts of the dielectric constants were also calculated which are required to develop optoelectronic devices. In photoluminescence studies, a broad emission band centered at 404 nm was found in addition to a small band at 352 nm. A broad transition (from 29 to 33 °C) was observed with low dielectric constant value. A high piezoelectric charge coefficient (d33) of 14 pC/N was measured at room temperature which implies its usefulness for various sensor applications. The second harmonic generation efficiency of crystal was found to be 1.5 times to that of KDP. From thermo gravimetric analysis and differential thermal analysis, thermal stability and melting point (246 °C) were investigated. The dielectric behavior, optical characterization, piezoelectric behavior and the non-linear optical properties of the Bisglycine Lithium Nitrate single crystals were reported for the first time which established the usefulness of these crystals for various piezo- and opto-electronics applications.  相似文献   

17.
Tb3−xNdxGa5O12 single crystal with dimension of Φ22 mm × 28 mm and a good optical quality was grown by the Czochralski method. X-ray powder diffraction was carried out and lattice parameters were calculated, which showed that the single crystal belongs to cubic crystal system. The transmission spectrum in the wavelength range of 450–1500 nm, which indicated the crystal has low absorption coefficient at 900–1450 nm. The Verdet constants of Tb3−xNdxGa5O12 at 532, 633 and 1064 nm wavelengths calculated by the extinction method are 225, 145 and 41 radm−1 T−1, respectively, which are larger than that of commercial TGG (Tb3Ga5O12) reported. The magneto-optical figures of merit of the crystal calculated is 3162°/dB at 1064 nm, and the extinction ratio is larger than that of commercial TGG.  相似文献   

18.
In this study we have investigated the influence of iron diffusion and diffusion-annealing time on the mechanical and the superconducting properties of bulk Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors by performing X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness, dc resistivity (ρ-T) and critical current density (Jc) measurements. The samples are prepared by the conventional solid-state reaction method. Doping of Bi-2223 was carried out by means of iron diffusion during sintering from an evaporated iron film on pellets. Then, the Fe layered superconducting samples were annealed at 830 °C for 10, 30 and 60 h. The mechanical properties of the compounds have been investigated by measuring the Vickers hardness (Hv). The mechanical properties of the samples were found to be load dependent. The load independent Vickers hardness (H0), Young’s modulus (E), yield strength (Y), and fracture toughness (KIC) values of the samples are calculated. These all measurements showed that the values of the Vickers hardness, critical current density, and critical transition temperature and lattice parameter c increased with increasing Fe doping and diffusion-annealing time.  相似文献   

19.
A large LiBaB9O15 single crystal has been grown by the top-seeded solution growth (TSSG) method using a Li2Mo3O10 flux system. The crystal obtained exhibits (1 1 0), (1 1 3) and (1 0 2) faces. For the first time, thermal properties of the as-grown crystal, including thermal expansion, specific heat and thermal conductivity, have been investigated as a function of temperature. The specific heat of the LiBaB9O15 crystal was measured to be 0.663–1.110 J g?1 K?1 over the temperature range of 20–400 °C. The crystal exhibits thermal expansion along the a- and b-axis, coupled with thermal contraction along the c-axis, over the measured temperature range of 25–500 °C. The average thermal expansion coefficients along the a- and c-axis of the LiBaB9O15 crystal from 25 to 500 °C are calculated to be αa = 6.56 × 10?6 K?1 and αc = ?4.82 × 10?6 K?1, respectively.  相似文献   

20.
Mg0.4Al2.4O4 single crystal was grown by the Czochralski method. The measured specific heat values are 0.804-1.06 J g− 1 K− 1 in the temperature range from 298.15 to 573.15 K. The calculated thermal conductivity components are 11.37, 11.47 and 10.77 W m− 1 K− 1 along the [111], [004] and [22?0] direction at 298.15 K. The Vickers microhardness values are 1328-1414 kg mm− 2. These experimental results show that Mg0.4Al2.4O4 crystal is a promising substrate for GaN-based LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号