首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The present study examines the role of humic acid, as a representative of dissolved organic matter, in Cd(II), Cu(II), and Pb(II) speciation and biouptake by green microalgae. Cellular and intracellular metal fractions were compared in the presence of citric and humic acids. The results demonstrated that Cd and Cu uptake in the presence of 10 mg L(-1) humic acid was consistent with that predicted from measured free metal concentrations, while Pb biouptake was higher. By comparing Cd, Cu, and Pb cellular concentrations in the absence and presence of humic acid, it was found that the influence of the increased negative algal surface charge, resulting from humic acid adsorption, on cellular metal was negligible. Moreover, the experimental results for all three metals were in good agreement with the ternary complex hypothesis. Given that metal has much higher affinity with algal sites than humic acid adsorbed to algae, the contribution of the ternary complex to metal bioavailability was negligible in the case of Cd (II) and Cu (II). In contrast, the ternary complex contributed to over 90% of total cellular metal for Pb(II), due to the comparable affinity of Pb to algal sites in comparison with humic acid adsorbed to algae. Therefore, the extension of the biotic ligand model by including the formation of the ternary complex between the metal, humic acid, and algal surface would help to avoid underestimation of Pb biouptake in the presence of humic substances by green algae Chlorella kesslerii.  相似文献   

2.
To better understand the relationship between lead speciation and bioavailability in natural freshwaters, the interaction of lead with the freshwater alga Chlorella kesslerii was studied in the presence of the Suwannee River fulvic acid (SRFA). Special attention was paid to direct interactions of the fulvic acid on the algae, as well as potential physiological (membrane permeability and algal metabolism) influences. Lead-free ion concentration measurements were carried out using a novel ion-selective electrode. Pb uptake decreased in the presence of SRFA with respect to noncomplexed Pb, but uptake fluxes, cellular Pb, Pb bound to the transport sites, and total adsorbed Pb were all higher than predicted from Pb2+ activities, in accordance with the free ion activity model (FIAM). The discrepancies between the observed values and those predicted by the FIAM in the presence and absence of synthetic ligands increased with increasing concentration of SRFA. Several hypotheses were examined to explain the observed differences. No contributions of labile and/or hydrophobic Pb-SRFA complexes were found. Furthermore, direct biological effects, including variations in membrane permeability or algal metabolism, could not account for the observations. On the other hand, changes in the algal surface charge due to SRFA adsorption seemed to account, at least partially, for the observed increase in lead uptake in the presence of SRFA as compared to that corresponding to the same Pb2+ concentration in the presence of synthetic ligands.  相似文献   

3.
The relationship between lead speciation and its bioaccumulation by the alga Chlorella vulgaris was studied in the absence and presence of nitrilotriacetic, iminodiacetic, malonic, and citric acids. Pb uptake fluxes were rigorously analyzed by considering the simultaneous effects of metal transport in the medium coupled with metal complex dissociation kinetics. Under the conditions examined here, lead biouptake by C. vulgaris was governed by the free lead ion activity. Potentially labile hydrophilic complexes such as lead citrate and lead malonate did not contribute to the internalization fluxes. Kinetic modeling of the mass transport, adsorption reactions, and internalization fluxes confirmed the rate limiting role of the internalization flux. Comparison of the internalization and diffusive fluxes revealed that even in the presence of a large excess of Pb complexes, the supply of free ion (Pb2+) was sufficient to account for the observed Pb uptake. Pb adsorption to the cell surface was described by Langmuir isotherm. A new method was proposed as a means to estimate the number of Pb occupied transport sites at steady state. The apparent stability constant for the interaction of Pb with transport sites was determined to be 10(5.5) M(-1) at pH 6. Low temperature decreased both the Pb uptake flux and the Pb adsorbed to the transport sites. Pb uptake in the presence of Ca was competitively inhibited, and the binding affinity constant for Ca and transport sites was estimated to be 10(4.67) M(-1) at pH 6. Results were discussed within the perspective of the free ion activity and biotic ligand models.  相似文献   

4.
The present study provides results on the influence of humic substance (HS) photoalteration on lead availability to the freshwater microalga Chlorella kesslerii . The evolution of the free lead-ion concentrations measured by the ion exchange technique [Pb](IET) and intracellular lead contents was explored in the presence of Suwannee River humic (SRHA) and fulvic (SRFA) acids, as well as Aldrich humic acid (AHA) exposed at increasing radiance doses under a solar simulator. Modifications of HS characteristics highly relevant to Pb complexation and accumulation of HS to algal surfaces, including Fourier transform infrared spectroscopy, were followed. It was demonstrated that simulated sunlight exposure of HS increased [Pb](IET) in the medium for SRFA and SRHA, but had no effect for AHA. No clear relationship was observed between the changes in free lead-ion concentrations and intracellular content in alga for all studied HS, suggesting that HS photodegradation products also exhibit Pb complexation properties, and that direct interactions between HS and alga are affected. Indeed, photoalteration of humic substances reduced the adsorption of HS to the algal surface; the effect was more pronounced for SRFA and AHA and less significant for SRHA. The bioavailability results were consistent with the characterization of the phototransformation of humic substances: Pb speciation changes followed the modification of the relative abundance of the carboxylic groups and their molecular environment, while the reduced HS adsorption to the alga correlated with losses of the double bond abundance and aromaticity.  相似文献   

5.
Binding of heavy metal and actinide ions to natural colloids, such as humic substances (HSs) and metal (hydr)-oxides, plays an important role in the ecotoxicological behavior of these ions. Several thermodynamic models have been constructed to predict the speciation of these ions in metal/HS or metal/oxide binary systems. However, in natural environments the adsorption of HSs on oxides can influence the binding of target metals, leading to deviation from the additivity of calibrated binary models. In this study binding of copper (Cu2+) to the purified Aldrich humic acid (PAHA)/goethite complex in the neutral to acidic pH region was investigated by measuring Cu2+ binding isotherms. The measured isotherms were compared with the results obtained for the binary systems under similar conditions. The comparison revealed that Cu2+ binding in the ternary system is enhanced with respect to the sum of Cu2+ binding in the corresponding binary systems. From the analysis of the charging behavior of the adsorbed PAHA as well as the smeared-out potential profile near the PAHA/goethite interface, the increase of Cu2+ binding to the complex was mainly attributed to the decrease of proton competition to the functional groups of the adsorbed PAHA and the change of the electrostatic potential in the vicinity of the goethite surface.  相似文献   

6.
Metal speciation in aquatic systems is mainly determined by the type and concentration of ligands present in solution. A very important group of complexing agents is dissolved organic matter (DOM), e.g., humic and fulvic acids. According to the free-ion activity model, only the free metal ion is available to biota. Nevertheless, DOM has been reported to decrease or increase metal uptake, leading to uncertainty concerning the bioavailability of metal-DOM complexes. In this work the effect of Aldrich humic acid on cadmium accumulation by the zebra mussel, Dreissena polymorpha, was studied under laboratory conditions. Mussels, collected in a drinking water reservoir, were exposed to varying environmentally relevant concentrations of cadmium in the presence and absence of humic acid. Cadmium concentrations in the mussel tissues were analyzed, and measurements with a cadmium-ion-selective electrode were made to determine the free cadmium ion activity in the exposure waters. The uptake of humic acid by the zebra mussels was measured by the decrease of the total organic carbon (TOC) concentration in the water over time. The free cadmium ion activity in the water decreased from 51.6% to 19.9% of the total cadmium concentration in the presence of humic acid. This decrease by a factor of 2.6 resulted in a decrease in the cadmium uptake rate in the soft tissue of zebra mussels from 12.9 to 7.9 nmol/g dry wt/day, which corresponds to a decrease by a factor of 1.6. This implies that cadmium uptake rates were higher than predicted by the free-ion activity model and indicates that cadmium-humic acid complexes are partly available to zebra mussels.  相似文献   

7.
Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0-5 microM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu-gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of Fvaried by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.  相似文献   

8.
The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.  相似文献   

9.
We investigated the influence of humic and fulvic acid concentration (in the range of 1-1000 mg/L) on the binding of the two trace metals Cu(II) and Pb(II). The ability of the non-ideal competitive adsorption (NICA)-Donnan model to correctly predict Cu and Pb binding at low humic or fulvic acid concentration and lower ionic strength (0.01 M NaNO3), based on model parameters obtained from experiments conducted at high humic or fulvic acid concentrations (approximately 1000 mg/L) and higher ionic strength (0.1 M NaNO3), was tested. The binding of Cu and Pb to humic and fulvic acid in 0.01 M NaNO3 was determined over wide ranges in proton and metal ion activities using three different methods: ligand exchange-adsorptive differential pulse cathodic stripping voltammetry at low humic or fulvic acid concentrations (1-3 mg/L), differential pulse anodic stripping voltammetry at intermediate humic or fulvic acid concentrations (10-20 mg/L), and ion-selective electrodes at high humic or fulvic acid concentrations (approximately 1000 mg/L). The results demonstrate that binding isotherms for Cu and Pb can be measured at low humic or fulvic acid concentration using suitable voltammetric techniques. The binding isotherms for Cu and Pb to humic and fulvic acid obtained at constant pH values in the range of pH 4-8 are shown to be independent of humic and fulvic acid concentration. The NICA-Donnan model, calibrated for Cu and Pb binding using data measured at high humic and fulvic acid concentrations and an ionic strength of 0.1 M, accurately predicts Cu and Pb binding at low humic and fulvic acid concentrations and lower ionic strength (0.01 M). We conclude that NICA-Donnan parameters obtained by fitting experimental data measured with ion-selective electrodes at high humic or fulvic acid concentrations can be used for geochemical modeling of soils and aquatic environments with much lower concentrations of humic or fulvic acids.  相似文献   

10.
Modeling metal binding to soils: the role of natural organic matter   总被引:4,自引:0,他引:4  
The use of mechanistically based models to simulate the solution concentrations of heavy metals in soils is complicated by the presence of different sorbents that may bind metals. In this study, the binding of Zn, Pb, Cu, and Cd by 14 different Swedish soil samples was investigated. For 10 of the soils, it was found that the Stockholm Humic Model (SHM) was able to describe the acid-base characteristics, when using the concentrations of "active" humic substances and Al as fitting parameters. Two additional soils could be modeled when ion exchange to clay was also considered, using a component additivity approach. For dissolved Zn, Cd, Ca, and Mg reasonable model fits were produced when the metal-humic complexation parameters were identical for the 12 soils modeled. However, poor fits were obtained for Pb and Cu in Aquept B horizons. In two of the soil suspensions, the Lund A and Romfartuna Bhs, the calculated speciation agreed well with results obtained by using cation-exchange membranes. The results suggest that organic matter is an important sorbent for metals in many surface horizons of soils in temperate and boreal climates, and the necessity of properly accounting for the competition from Al in simulations of dissolved metal concentrations is stressed.  相似文献   

11.
In situ measurements of Fe and Mn by dialysis and diffusive gradients in thin-films (DGT) in 5 lakes (pH 4.7-7.5, ionic strength 0.3-5 mmol l(-1)) and Cu and Zn in an acidic and circumneutral lake were compared to results from on site filtration. For the most acidic lake (pH 4.7) all measurements agreed, indicating an absence of colloids and negligible complexation by organic matter. There was little difference in the Mn concentrations measured by the three techniques for any lake, consistent with it being free from complexation. Zn measured by dialysis in circumneutral water was only slightly higher than DGT measurements, appropriate to only partial complexation. Substantial differences between dialysis and DGT for Cu were consistent with complexation by fulvic and humic substances, though not to the extent predicted by the speciation code WHAM. To achieve a good fit it was necessary to adjust the pK for Cu-fulvic binding from 0.8 to 1.3 and to assume that fulvic substances dominated. The presence of low molecular weight strong binding ligands would also be consistent with the data. Differences between the three measurement methods were greatest for Fe, attributable to the presence of large oxyhydroxide colloids, organic complexation and low molecular weight, reactive hydrolysis products. Fe and Mn concentrations measured by DGT on samples returned to the laboratory were much lower than in situ concentrations, illustrating the need for in situ measurements. While use of two in situ techniques provided useful information on the speciation of these natural waters, further refinements are required for unambiguous characterization of the solution. The use of DGT with a more restricted gel that excludes complexes with humic substances should provide complementary information to in situ dialysis.  相似文献   

12.
Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.  相似文献   

13.
Sorption of methylmercury (MeHg) to three different humic acids was investigated as a function of pH and humic concentration. The extent of sorption did not show a strong pH dependence within the pH range of 5-9. Below pH 5, a decrease in adsorption for all humic samples was observed. The experimental data for equilibrium sorption of MeHg were modeled using a discrete log K spectrum approach with three weakly acidic functional groups. The modeling parameters, which were the equilibrium binding constants and the total binding capacities, represented the data well at all MeHg and humic concentrations and pH values for a given humic sample. The estimated binding constants for complexes of MeHg with humic acids were similar in magnitude to those of MeHg with thiol-containing compounds, suggesting that binding of MeHg involves the thiol groups of humic acids. The results show that only a small fraction of the reduced sulfur species in humic substances may take part in binding MeHg, but in most natural systems, this subfraction is considerably higher in concentration than ambient MeHg. The model developed here can be incorporated into speciation models to assess the bioavailability of MeHg in the presence of dissolved organic matter and competing ligands such as chloride and sulfide.  相似文献   

14.
Recent extensions of counterion condensation theory, originally developed for well-defined linear polyelectrolytes, enable us to analyze the interaction of trace metals with humic acid. In the present model, the heterogeneity of the macromolecule is taken into account as well as the chemical binding of the considered metal ions to the humic material. Experimentally, potentiometric titrations have been performed for humic acid in solution in the presence of different environmentally important (heavy) metals (Ca, Cd, Cu, Ni, and Pb) at various metal concentrations by titrating with potassium hydroxide without additional salt. From proton release data obtained for the initial point in the titration, it was estimated that the interaction of the different metals with the humic acid in terms of binding strength increased in the order Ca < Cd approximately = Ni < Pb approximately = Cu. These results were confirmed by model analysis. Experimentally obtained apparent dissociation constants were in good agreement for the humic acid systems containing Ca, Cd, and Ni at concentrations ranging from 0 up to 0.75 x 10(-3) mol L(-1) and polymer dissociation degree from about 0.1 up to approximately 0.8. Also for the Cu/humic acid and Pb/humic acid systems, the agreement between experimental data and calculated data was satisfactory atthe lowest metal concentrations over the complete titration curve. For elevated levels of Cu and Pb, the agreement between experimental data and theoretical calculations becomes less satisfactory at low degrees of dissociation of the humic acid. This distortion of the potentiometric curves is probably due to changes in the intrinsic pK of the functional groups due to metal binding. This complex process is not included in present polyelectrolytic models.  相似文献   

15.
Fouling in membranes used for water treatment has been attributed to the presence of natural organic matter (NOM) in water. There have been reports recently on the contribution of hydrophilic fractions of NOM (e.g., carbohydrate-like substances) to fouling, but there is still little information about the physicochemical interactions between membranes and carbohydrate-like substances. In this study, the affinity of carbohydrate-like substances to two different microfiltration (MF) membranes was investigated by using atomic force microscopy (AFM) and functionally modified microspheres. Microspheres were attached to the tip of the cantilever in an AFM apparatus and the adhesion forces working between the microspheres and the membranes were determined. The microspheres used in this study were coated with either hydroxyl groups or carboxyl groups to be used as surrogates of carbohydrate-like substances or humic acid, respectively. Measurements of adhesion force were carried out at pH of 6.8 and the experimental results demonstrated that the adhesion force to membranes was strong in the case of hydroxyl groups but weak in the case of carboxyl groups. The strong adhesion between the hydroxyl group and the membrane surface is explained by the strong hydrogen bond generated. It was also found that the affinity of the hydroxyl group to a polyvinylidenefluoride (PVDF) membrane was much higher than that to a polyethylene (PE) membrane, possibly due to the high electronegative nature of the PVDF polymer. The time course of changes in the affinity of hydroxyl group to a membrane used in a practical condition was investigated by repeatedly carrying out AFM force measurements with PE membrane specimens sampled from a pilot plant operated at an existing water treatment plant. Microspheres exhibited strong affinity to the membrane at the initial stage of operation (within 5 days), but subsequently exponential reduction of the affinity was seen until the end of operation, as a result of fouling development. However, the magnitude of affinity of hydroxyl-modified microspheres was much higher than that of carboxyl-modified microspheres even after the significant reduction of affinity of hydroxyl-modified microspheres to the membranes was seen. The results obtained in this study partially explain why hydrophilic NOM dominated over humic substances in foulants of membranes used for water treatment in recent studies on fouling.  相似文献   

16.
Flow field flow fractionation (FIFFF), inductively coupled plasma-mass spectroscopy (ICP-MS), and transmission electron microscopy (TEM) coupled to X-ray energy dispersive spectrometry (X-EDS) are used in series for the first time to characterize colloids. Results demonstrate the utility of FIFFF-ICP-MS-TEM/X-EDS to relate physical properties (size) of colloids to their chemical properties (chemical composition, surface chemical composition, and colloids-trace elements association). Results suggest that the major part of natural organic matter (NOM) is concentrated in the fraction < 0.01 microm (C2). Aluminum, iron, and manganese are the main colloidal components in the fraction 0.01-0.45 microm (C1). Aluminum occurs as aluminum oxides or aluminosilicates in the whole size range, while iron and manganese occur as individual oxyhydroxides in the size range < 0.20 microm. Within the C2 fraction, Al, Mn, Cu, and Ni elements are complexed to NOM (e.g., humic substances). Iron is complexed to NOM in some samples and probably free in other samples. Lead is totally free in all samples. Within the C1 fraction, Cu and Pb are mostly associated to Fe and Mn oxyhydroxides. Consequently, NOM with Fe and Mn oxyhydroxides are the main colloidal carriers of trace elements in the Loire watershed system.  相似文献   

17.
The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/ nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 A in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 A. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 A and one carboxyl-O at 2.84 A in the first shell, and two second shell C atoms at an average distance of 3.14 A, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.  相似文献   

18.
An electroanalytical method has been developed to investigate the uptake of redox-active species by the humic acid substances. The Suwannee River humic acid (SHA) films were first cast on a glassy carbon electrode using an electrophoretic approach. The binding of a series of redox-active species to these SHA films was then probed using cyclic voltammetry at a rotating disk electrode. Neutral molecules such as hydroquinone and cationic species such as methyl viologen are able to bind with the humic membrane and exhibit high redox activity within the film. On the other hand, anionic species such as ferrocyanide are unable to attach themselves to the SHA films and thus exhibit negligible electrochemical activity. Cyclic voltammetric study of SHA films has also facilitated the determination of the partitioning constants and identification of the effect of coadsorbed ions (Ca2+) on the binding of redox species. The electroanalytical method described in this study opens up new avenues to examine the interactions and transport of charged species in a humic acid environment.  相似文献   

19.
The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 microm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.  相似文献   

20.
In coastal areas, strong complexation of copper generally reduces its toxicity; our ability to monitor and regulate copper as a toxin therefore depends on our understanding of the sources and sinks of the copper-binding ligands. Terrestrial humic substances (HS) are well-recognized contributors to weak ligand concentrations in aquatic systems. In this work, we show that HS are likely contributors to both stronger and weaker ligand classes controlling copper speciation in coastal areas receiving typical inputs of terrestrial organic matter. We used competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV), with the added ligands benzoylacetone and salicylaldoxime, to examine copper binding by terrestrial HS in a seawater matrix, at HS and copper concentrations typical of coastal waters. Copper titration data of 1 mg/L Suwannee River humic acid (SRHA) in seawater could be modeled using conditional stability constants of 10(12.0) and 10(10.0) and total ligand concentrations of 10.4 and 199 nM for a stronger and weaker ligand, respectively. Similar results were obtained for Suwannee River fulvic acid (SRFA). Strong copper binding by SRFA in seawater was weaker than previously reported for a freshwater at similar pH, possibly indicating effects of Ca and Mg competition or ionic strength. Nevertheless,the concentrations and binding strengths of copper ligands we observed are comparable to the range reported in previous coastal speciation studies. In addition, we show that the weaker copper ligands cause internal calibration techniques to significantly underestimate the sensitivity of ACSV in the presence of HS concentrations typical of coastal waters. To address this issue, we demonstrate the use of "overload titrations", using a high enough concentration of added ligand to outcompete all natural ligands as an alternative calibration technique for analysis of coastal samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号