首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
由于电液速度伺服系统的非线性和参数的不确定性,难以建立精确的数学模型,文中引入RBF(径向基函数)模糊自适应控制,利用RBF神经网络进行自学习,修改和完善模糊规则,改善其动态性能.仿真结果表明该方法具有较强的自适应和自学习能力,即使对复杂的非线性系统也能取得良好的控制效果.  相似文献   

2.
免疫PID在液压位置伺服系统中的应用研究   总被引:8,自引:1,他引:8  
生物体的免疫应答机制是生物体维持免疫平衡的重要手段,免疫应答的自我调节功能对控制器设计具有重要的借鉴作用。将免疫反馈引入到传统的PID控制器中,并采用单层Adaline神经网络作为抗体抑制调节函数,提高免疫PID控制器的参数自适应能力。该结构的免疫PID控制器具有结构简单、自适应能力强等特点,将该控制器应用到宝钢2050粗轧液压立辊压下系统中,结果表明在外界扰动和系统工况发生变化时,该控制器也能取得满意的控制效果。  相似文献   

3.
电液伺服系统中,存在的各种非线性因素,为了使系统对恶劣的环境有较强的适应能力取得较高的控制品质和控制精度,设计了模糊自适应PID非线性控制器.仿真和试验结果表明,文中设计的基于模糊自适应立PID控制算法的控制器明显改善了系统的动态性能,可以方便应用于工程之中。  相似文献   

4.
针对非对称缸电液伺服系统的非线性,分别使用常规模糊控制器和变论域自适应模糊控制器对其控制,其结果表明后者性能更理想。  相似文献   

5.
自适应交互算法实现简单,能够在未知系统模型的前提下完成控制参数梯度递减,使系统控制性能趋向优化。将自适应交互算法引入到传统的PID控制器中,构成一种自适应交互PID控制器,将该控制器应用到宝钢2050粗轧液压立辊压下系统中,结果表明在外界扰动和系统工况发生变化时,该控制器能够自适应调节控制器参数,使控制系统取得满意的控制效果。  相似文献   

6.
电液马达伺服系统中存在各种类型的扰动,包括参数不确定性和不确定非线性,制约着其高精度位置控制。针对电液马达伺服系统高精度位置跟踪控制,考虑系统的黏性摩擦特性以及外干扰等建模不确定性,提出了一种基于鲁棒自适应的电液马达伺服系统高精度位置控制策略。所提出的全状态控制器通过自适应对模型不确定性进行估计及前馈补偿,提高了系统的低速伺服性能;通过自适应对未建模干扰等不确定性的上界进行估计并前馈补偿,提高了系统对外干扰的鲁棒性。所设计的闭环控制器还能保证系统获得渐近跟踪性能,对比仿真验证了其可行性。  相似文献   

7.
在低速、超低速运行时,电液伺服系统受到以摩擦力为主的干扰力矩和参数不确定性等扰动,进而影响电液位置伺服系统的低速性能。该研究从低速平稳性和跟踪精度两个角度出发,分析了电液位置伺服系统低速性能的主要影响因素,提出了一种滑模自适应控制方法。并将该方法应用于某硅钢厂电液单辊CPC系统,进行了仿真。研究表明,在考虑系统非线性、扰动及参数不确定性的情况下,该研究的滑模自适应控制方法能够有效地抑制抖振并获得伺服系统的低速平稳、快速跟踪。  相似文献   

8.
模糊自适应PID在数控进给伺服系统的应用   总被引:4,自引:0,他引:4  
数控机床的进给伺服控制是复杂的机电耦合系统,因其存在参数时变、负载扰动以及电机的非线性等缺点,很难为其建立准确的模型.模糊FIJzzy控制具有无需建立被控对象的数学模型、鲁棒性好等优点但稳态精度差,将模糊控制和PID控制相结合,设计了模糊自适应PID控制器,并将此应用于数控伺服系统的控制中,该控制器具有较完善的控制性能.仿真实验的结果表明,采用该模糊自适应PID控制器具有较高的稳定精度,较强的鲁棒性.  相似文献   

9.
考虑到电液伺服系统中存有各种非线性因素、不确定干扰以及参数时变,为了提高干扰下电液力伺服系统的控制精度,以电液伺服振动实验台作为控制对象,构建其非线性模型,同时使用参数自适应率对不定参数进行补偿,并在反演控制器中引入滑模控制以降低系统的干扰敏感性,利用Lyapunov理论保证闭环系统的全局稳定。对设计的控制器进行实验,模拟在有未知外部位置干扰下的力控制,提升系统的稳定性。实验结果证明,此控制方法能够有效地提升电液力伺服系统的抗干扰跟踪性能。  相似文献   

10.
针对电液伺服系统的非线性、时变性和模型的不确定性等特点,提出了一种基于模糊补偿控制的双伺服同步系统,通过模糊控制器来补偿同步通道的非线性和各种不确定性因素所导致的同步位置误差。为了提高模糊控制器的补偿效果,在补偿控制系统中引入一个并联的积分分离PI环节,可以有效地消除补偿系统的静态同步误差。仿真结果表明,该方法具有较高的同步控制精度。  相似文献   

11.
在多绳缠绕式超深矿井提升机运行过程中,采用基于电液伺服系统的浮动天轮主动调绳装置,调节钢丝绳的张力。根据浮动天轮主动调绳装置的结构和原理建立阀控缸液压伺服系统的数学模型,设计了电液伺服系统的模糊自适应PID控制器,提出了一种基于模糊自适应PID控制的电液伺服系统实现浮动天轮主动调绳的控制方法,并建立了相应的数字仿真模型,以不同扰动频率的正弦函数输入模拟钢丝绳的振动,分析了液压缸的动态特性。仿真结果证明了采用模糊自适应PID控制方法的电液伺服系统浮动天轮主动调绳装置的有效性。  相似文献   

12.
针对电液位置伺服系统控制性能不佳的问题,提出一种基于改进PSO算法优化的模型参考自适应(Model Reference Adaptive Control,MRAC)跟踪控制方法。首先,建立电液位置伺服系统数学模型,设计出模型参考自适应控制器;其次,分析PSO算法、APSO算法在参数寻优过程中的不足,提出一种改进的PSO算法;最后,将改进的PSO算法用于模型参考自适应控制器以改善其控制性能。结果表明,改进PSO算法优化的模型参考自适应控制具有响应速度快、跟踪精度高的优点。  相似文献   

13.
建立了液压位置伺服系统的动力学模型。针对液压伺服系统难以精确控制的特点,把模糊控制理论引入了伺服系统,构造了模糊推理系统,设计了二维模糊控制器。基于Matlab/Simulink软件平台对电液位置伺服系统进行了可视化仿真,仿真结果显示所设计的二维模糊控制器在电液位置伺服系统中取得了良好的控制精度和稳定性。为研究设计多维模糊控制器以及多输入多输出模糊控制系统(MIMO)提供了思路和方法。  相似文献   

14.
在建立整个电液位置伺服系统的非线性方程中,由于未考虑到外界的未知干扰和建模过程中参数的变化,即液压缸黏性阻尼系数、液压缸总泄漏系数、液压油弹性体积模量会随外负载、工作温度等不同条件发生变化,模型的准确性会受到影响。通过自适应的方法让相应的参数实时变化,提高整个系统的稳定性。通过干扰观测器补偿外界的未知状况,从而提高整个系统的鲁棒性。通过对设计的控制器进行试验,实现对干扰的抑制。试验结果显示,该控制器对电液位置伺服系统的鲁棒性有明显的提高。  相似文献   

15.
针对电液位置伺服系统的不确定性、非线性和常规PID控制的缺点,设计了具有在线PID参数调整的模糊自整定PID控制器,以减小电液位置伺服系统中参数摄动等引起的超调和振荡。利用AMESim与Matlab软件各自的优势,分别进行了液压系统建模、控制器设计。联合仿真结果表明,模糊自整定PID控制器使系统有较高的稳态精度、较快的动态响应,系统具有很好的适应性。  相似文献   

16.
针对阀控液压缸位置伺服系统非线性导致模型参数确定困难及干扰问题,在分析三阶位置控制的电液控制系统原理及模型的基础上,引入神经网络的RBF 径向基控制模型和自适应滑模算法,同时考虑了非1负反馈参数,建立了基于RBF 神经网络滑模控制的电液伺服控制系统数学模型。通过选取合适的Lyapunov 函数,分析了系统稳定性,解决了参数未定及挠动情况下的电液伺服系统控制器设计问题。仿真结果证明,所设计的控制器使系统的输出对给定信号的跟踪精度高,响应快,具有较强的鲁棒性。  相似文献   

17.
电液伺服系统的非线性控制   总被引:1,自引:0,他引:1  
针对电液伺服系统非线性、参数时变的特点,为提高系统的性能,首先讨论了系统的非线性数学模型,利用逆系统解耦控制方法,将非线性系统转化成伪线性系统,进行线性控制;在此基础上,提出了一种模糊PID自适应非线性控制设计方案,与逆系统控制方法进行了仿真比较;结果表明,采用模糊PID控制,在系统参数变化、外界扰动的影响下,具有较好的自适应性和动态鲁棒性能。  相似文献   

18.
为提高电液伺服系统的控制性能。设计了一种神经网络自组织模糊控制器。即NNSOC。通过仿真实验表明,与传统的模糊控制器相比,该控制器可有效的抑制参数扰动及外力干扰,具有很强的鲁棒性。  相似文献   

19.
This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC's online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号