首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thirty-three Holstein cows averaging 687 kg of body weight were allotted 6 wk before the expected date of parturition to 11 groups of 3 cows blocked within parity for similar calving dates to determine the effects of feeding different sources of fatty acids on blood parameters related to fatty liver and profile of fatty acids in plasma and liver. Cows were fed lipid supplements from 6 wk before the expected date of parturition until d 28 of lactation. Cows within each block were assigned to 1 of 3 isonitrogenous and isoenergetic dietary supplements: control with no added lipids (CO); unsaturated lipids supplied as whole flaxseed (FL; 3.3 and 11.0% of the dry matter in prepartum and postpartum diets, respectively); and saturated lipids supplied as Energy Booster (EB; 1.7 and 3.5% of the DM in prepartum and postpartum diets, respectively). Diets EB and FL had similar ether extract concentrations. Multiparous cows fed EB had lower dry matter intake and milk production, higher concentrations of nonesterified fatty acids and β-hydroxybutyrate in plasma and triglycerides (TG) and total lipids in liver, and lower concentrations of plasma glucose and liver glycogen than those fed FL and CO. Production of 4% fat-corrected milk was similar among treatments. Multiparous cows fed FL had the highest liver concentrations of glycogen on wk 2 and 4 after calving and lowest concentrations of TG on wk 4 after calving. Liver C16:0 relative percentages in multiparous cows increased after calving whereas those of C18:0 decreased. Relative percentages of liver C16:0 were higher in wk 2 and 4 postpartum for multiparous cows fed EB compared with those fed CO and FL; those of C18:0 were lower in wk 4 postpartum for cows fed EB compared with those fed CO and FL. Liver C18:1 relative percentages of multiparous cows increased after calving and were higher in wk 4 for cows fed EB compared with those fed CO and FL. The inverse was observed for liver C18:2 relative percentages. In general, diets had more significant effects on plasma concentrations of nonesterified fatty acids, β-hydroxybutyrate, and glucose and liver profiles of fatty acids, TG, total lipids, and glycogen of multiparous than primiparous cows. These data suggest that feeding a source of saturated fatty acids increased the risk of fatty liver in the transition cow compared with feeding no lipids or whole flaxseed. Feeding flaxseed compared with no lipids or a source of saturated fatty acids from 6 wk before calving could be a useful strategy to increase liver concentrations of glycogen and decrease liver concentrations of TG after calving, which may prevent the development of fatty liver in the transition dairy cow.  相似文献   

3.
The objectives of this study were to characterize the change in blood metabolites over time, and to evaluate the effect of dietary energy concentration on ketone body accumulation in periparturient cows. Twenty-eight multiparous Holstein cows were listed in order of their anticipated due dates and assigned randomly to 1 of 2 groups: with or without a transition diet. The control group received a nonlactating cow diet [1.54 Mcal/kg of net energy for lactation (NEL), 10.9% crude protein (CP), 53.1% neutral detergent fiber (NDF)] from 28 d before expected parturition, and a lactation diet (1.77 Mcal of NEL/kg, 16.8% CP, 29.9% NDF) after parturition. The treatment group received a transition diet (1.71 Mcal of NEL/kg, 16.8% CP, 35.2% NDF) from 17 d before parturition to 14 d after calving and was fed the same diets as cows in the control group during the third week of lactation. Blood from the coccygeal vein was sampled 3 times per week from 21 d before expected parturition to 21 d postpartum for analysis of glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate, acetoacetate, acetone, and glycerol. There were no significant differences in dry matter intake, milk yield, milk components, body weight change, and body condition score change during the postcalving period. Plasma concentrations of different ketone bodies changed in parallel, stayed relatively constant precalving, peaked after parturition, and then decreased but remained high compared with concentrations late in gestation. Plasma concentrations of NEFA and glycerol changed in a pattern similar to those of the ketone bodies. Feeding a transition diet resulted in a greater area under the curve (AUC) for glucose in the last 17 d of gestation, but in no effect within the first 21 d in milk. Acetoacetate AUC was greater for treatment cows than for control cows across the first 21 d in milk. The AUC of NEFA and glycerol between d 15 and 21 postpartum were greater for treatment cows than for control cows. Feeding a transition diet both before and after parturition was associated with greater mobilization of adipose tissue and greater exposure to ketone bodies in early lactation compared with abruptly changing to a lactation diet after parturition.  相似文献   

4.
5.
Feeding rumen-protected fat (RPF) can improve energy supply for dairy cows but it affects glucose metabolism. Glucose availability is a precondition for high milk production in dairy cows. Therefore, this study investigated endocrine regulation of glucose homeostasis and hepatic gene expression related to glucose production because of RPF feeding in lactating cows. Eighteen Holstein dairy cows during second lactation were fed either a diet containing RPF (mainly C16:0 and C18:1; FD; n = 9) or a control diet based on corn starch (SD; n = 9) for 4 wk starting at 98 d in milk (DIM). Feed intake and milk yield were measured daily and milk composition once a week. Blood samples were taken weekly for analyses of plasma triglyceride, nonesterified fatty acids (NEFA), β-hydroxybutyrate, bilirubin, urea, lactate, glucose, insulin, and glucagon. At 124 DIM, an intravenous glucose tolerance test (GTT; 1 g/kg of BW0.75) was performed after a 12-h period without food. Blood samples were taken before and 7, 14, 21, and 28 min after glucose administration, and plasma concentrations of glucose, insulin, and glucagon were measured. Glucose half-life as well as areas under the concentration curve for glucose, insulin, and glucagon were calculated. After slaughter at d 28 of treatment, liver samples were taken to measure mRNA abundance of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose 6-phosphatase (G6Pase), and facilitative glucose transporter 2. Dry matter intake, but not energy and protein intake, was lower in FD than in SD. Milk yield during lactation decreased more in SD than in FD, and milk protein was lower in FD than in SD. Plasma concentrations of triglycerides and NEFA were higher in FD than in SD. Plasma insulin concentrations were lower and the glucagon:insulin ratios were higher in FD than in SD. Fasting glucose concentration before GTT was lower, and fasting glucagon concentrations tended to be higher in FD than in SD. In liver, fat content tended to be higher and G6Pase mRNA abundance was lower in FD than in SD. Lower hepatic G6Pase mRNA abundance was associated with reduced fasting plasma glucose concentrations, but the glucose-induced insulin response was not affected by RPF feeding. Hepatic G6Pase gene expression might be affected by DMI and might be involved in the regulation of glucose homeostasis in dairy cows, resulting in a lower hepatic glucose output after RPF feeding.  相似文献   

6.
The objectives were to determine the effects of a rumen-protected blend of B vitamins and choline (RPBC) on the incidence of health disorders, milk yield, and reproduction in early lactation and the effects on gene expression and liver fat infiltration. A randomized controlled trial in 3 commercial dairy herds (n = 1,346 cows with group as the experimental unit; experiment 1) and a university research herd (n = 50 cows with cow as the experimental unit; experiment 2) evaluated the use of 100 g/cow per d of commercially available proprietary RPBC supplement (Transition VB, Jefo, St. Hyacinthe, Quebec, Canada), or a placebo, fed 3 wk before to 3 wk after calving. In experiment 2 liver biopsies were taken at 4 and 14 ± 1 d in milk to measure triacylglycerol concentrations and expression of 28 genes selected to represent relevant aspects of liver metabolism. Treatment effects were assessed using multivariable mixed logistic regression models for binary health and reproductive outcomes; linear regression models for milk yield, dry matter intake, and liver outcomes; and survival analysis for time insemination and pregnancy. In experiment 1, treatment did not have an effect on the incidence of hyperketonemia (blood β-hydroxybutyrate ≥ 1.2 mmol/L; cumulative incidence to 3 wk postpartum of 28 to 30%), clinical health disorders, or udder edema. The prevalence of anovulation at 8 wk postpartum was 11% in the treatment group and 23% in the control but did not differ statistically given group-level randomization. Pregnancy at first insemination (33 and 35%) and median time to pregnancy to 200 d in milk (96 and 97 d) were not different between treatment and control, respectively. No difference was observed between treatment groups in milk yield or components through the first 3 Dairy Herd Improvement Association test days (44 kg/d in both groups, accounting for parity and components). In experiment 2, there were no differences between treatment groups in feed intake. Mean blood β-hydroxybutyrate was lower at wk 3 in RPBC (0.6 vs. 0.9 ± 0.12 mmol/L) with no difference between treatments for mean blood concentrations of fatty acids (wk ?1 or 1) and β-hydroxybutyrate at wk 1 or 2. The gene for acyl-CoA oxidase 1 (ACOX1) had lower mRNA abundance in RPBC with no difference between treatments for the other genes, but the expression of half of the genes assessed differed with days in milk. Liver triacylglycerol was lower in primiparous cows at 4 d in milk in RPBC (2.0 vs. 4.4 ± 1.2%) but not at 14 d in milk (2.2 vs. 3.2 ± 0.97%) with no treatment effect in multiparous cows (4.6 ± 0.8%). Accounting for parity, days in milk, fat and protein percentages, repeated test days, and a random effect of cow, no significant difference was observed between treatments in milk yield across the first 3 Dairy Herd Improvement Association tests (41.2 ± 1.3 in RPBC vs. 38.0 ± 1.4 kg/d in control). Under the diet and management conditions of the field study including low prevalence of clinical health disorders, in experiment 1 we did not detect a benefit of RPBC, but in experiment 2 liver fat content decreased in primiparous cows.  相似文献   

7.
Twenty-four multiparous Holstein cows [body weight, 759 kg (SD = 30 kg); body condition score, 3.2 (SD = 0.13)] were used in a randomized complete block design to determine the effect of feeding α-amylase during the transition period on rumen fermentation, key metabolic indicators, and lactation performance. Cows were assigned to either a control diet or the control diet supplemented with α-amylase (662 fungal amylase units per gram, AMA) at 0.1% of diet dry matter (DM). Experimental diets were fed from 21 d before expected calving through 21 d in milk. From 22 to 70 d in milk, all cows were fed a similar lactation cow diet. Average pre- and postpartum DM intakes were 12.4 and 17.8 kg/d, respectively, and did not differ between treatments; however, DM intakes during the last week prepartum decreased to a greater degree in AMA than control cows compared with wk −2. Supplementing diets with α-amylase tended to increase proportions of ruminal butyrate prepartum but not postpartum. Treatment differences were not detected for concentrations of insulin in plasma and lipid and glycogen in liver tissue. Prepartum, concentrations of β-hydroxybutyrate and nonesterified fatty acids were increased in cows fed AMA compared with the control diet. Postpartum, concentrations of glucose in plasma tended to be increased by feeding AMA. Increased plasma β-hydroxybutyrate and nonesterified fatty acids pre- but not postpartum and a tendency for increased plasma glucose postpartum demonstrate shifting reliance from lipid- to carbohydrate-based metabolism postpartum in cows fed α-amylase.  相似文献   

8.
The effect of increasing the postpartum metabolizable protein (MP) supply on performance and mammary metabolism was studied using 8 Holstein cows in a complete randomized design. At parturition, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS). Arterial and epigastric venous blood samples were taken 14 d before expected parturition and at 4, 15, and 29 d in milk (DIM). To compensate previously estimated deficiency of essential AA and to avoid oversupply, casein protein infusion was graduated with 696 ± 1, 490 ± 9, and 212 ± 10 g/d at 4, 15 and 29 DIM, respectively. Dry matter intake was unaffected by CAS. Compared with CTRL, MP supply was greater at 4 DIM with CAS but did not differ by 29 DIM. Milk yield was greater with CAS (+7.2 ± 1.3 kg/d from 1 to 29 DIM). Milk protein yield was greater with CAS at 4 DIM and averaged 1,664 ± 39 g/d compared with 1,212 ± 86 g/d for CTRL, but did not differ at 29 DIM (1,383 ± 48 g/d). The ratio of MP total supply to requirement was numerically greater at 4 DIM for CAS compared with CTRL, indicating less postpartum protein deficiency. In contrast, a greater net energy deficiency tended to be induced with CAS, but the greater milk yield allowed a large part of mobilized fat to be secreted in milk. Arterial concentration of total essential AA increased sharply after parturition for CAS compared with slight decreases for CTRL. The patterns of arterial concentrations combined with arterial-mammary venous concentration differences indicated that Lys, Leu, and Tyr were the first-limiting AA at 4 DIM with CTRL. Mammary plasma flow was unaffected by treatment, indicating similar perfusion of mammary tissue. The greater milk yield with CAS was associated with greater mammary uptake of individual essential AA, tendencies to greater uptake of glucose, lactate, and β-hydroxybutyrate, whereas uptakes of volatile fatty acids were unaffected. Despite similar MP supply by 29 DIM, milk and lactose yields were greater with CAS indicating a persistent response to increased postpartum MP supply. In conclusion, the postpartum MP deficiency can have a substantial negative effect in dairy cows as the major outcome of increasing the postpartum MP supply was increased milk, milk protein, and lactose yield, as well as an enhanced MP balance. Potential positive effects for other body functions than milk synthesis are discussed. Future investigations are needed to delineate how to transfer the effect into practical feeding strategies.  相似文献   

9.
Effect of dietary rumen-protected choline in lactating dairy cows   总被引:3,自引:0,他引:3  
Two experiments were conducted to test the effects of graded amounts of rumen-protected choline on milk yield and composition in lactating dairy cows fed 40% corn silage and 60% concentrate diets (DM basis). In Experiment 1, 48 Holstein cows were fed 0, .078, .156, and .234% rumen-protected choline (choline chloride basis) from wk 5 to 21 postpartum. Increasing choline had no effect on DMI and tended to increase milk yield only from 1 to 2.2 kg/d. Milk fat percentage was reduced in the .078% choline treatment and increased to control levels thereafter with .156 and .234% choline. In Experiment 2, 16 Holstein cows in midlactation were assigned randomly to either 13.0 or 16.5% dietary CP (DM basis). Within CP concentration, cows were fed 0, .08, .16, and .24% rumen-protected choline in a replicated 4 x 4 Latin square design. Dietary protein had no effect on milk yield, although milk protein percentage and yield were increased .25 percentage units and 63 g/d, respectively, by increased dietary CP. Increasing dietary choline to .24% linearly increased milk yield 2.6 kg/d, although it had no consistent effects on milk fat or protein percentage. There was only a slight tendency for greater responses in milk yield to dietary choline with lower dietary CP. Data from these experiments confirm earlier results with postruminal choline infusions, suggesting that choline may be a limiting nutrient for milk production.  相似文献   

10.
Nicotinic acid (niacin) can suppress lipolysis, but responses to dietary niacin have been inconsistent in cattle. Our aim was to determine if 24 g/d of encapsulated niacin (EN; providing 9.6 g/d of bioavailable nicotinic acid) alters lipid metabolism and productivity of transition cows. Beginning 21 d before expected calving, primiparous (n = 9) and multiparous (n = 13) cows (body condition score of 3.63 ± 0.08) were sequentially assigned within parity to EN (12 g provided with ration twice daily) or control through 21 d postpartum. Liver biopsies were collected on d −21, −4, 1, 7, and 21 relative to parturition. Blood samples were collected on d −21, −14, −7, −4, 1, 4, 7, 14, and 21 relative to parturition. On d 7 postpartum, a caffeine clearance test was performed to assess liver function, and on d 21 to 23 postpartum, blood samples were collected every 8 h to monitor posttreatment nonesterified fatty acid (NEFA) responses. Data were analyzed using mixed models with repeated measures over time. A treatment × time × parity effect was observed on prepartum dry matter intake (DMI), which was caused by a 4 kg/d decrease in DMI of EN-treated multiparous cows compared with control multiparous cows during the final 4 d prepartum. A significant increase in plasma nicotinamide concentration occurred in EN-treated cows on d −7 and 21 relative to parturition. Prepartum glucose concentration decreased in treated animals, with no difference in plasma insulin concentration. Treatment × time × parity effects were detected for NEFA and β-hydroxybutyrate concentrations during the postpartum period. Plasma NEFA peaked at 1,467 ± 160 μM for control animals compared with 835 ± 154 μM for EN-treated animals. After treatments ended on d 21, no evidence was found for a plasma NEFA rebound in either parity group. A treatment × parity × time interaction was detected for liver triglyceride content, indicating a tendency for less liver triglyceride in EN-treated primiparous cows, but caffeine clearance rates were not affected by treatment. No treatment effects were observed for body condition score, body weight, energy balance, or milk or milk component production. A high dose of EN can decrease postpartum plasma NEFA concentration, but may also decrease prepartum DMI.  相似文献   

11.
Thiazolidinediones (TZD) are potent synthetic ligands for peroxisome proliferator-activated receptor-γ that have been shown previously to reduce plasma nonesterified fatty acids and increase peripartal dry matter intake (DMI) in dairy cows. Data from Holstein cows (n = 36) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism, milk production, and ovarian activity. Cows were administered 0, 2.0, or 4.0 mg of TZD/kg of BW by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples were collected daily from 22 d before expected parturition through 21 d postpartum and twice weekly from wk 4 through 9 postpartum. In response to increasing TZD dosage, plasma nonesterified fatty acid concentrations decreased linearly during the postpartum period (d 0 to +21: 348, 331, 268 ± 31 μEq/L, respectively). Plasma concentrations of glucose were highest in cows administered 4.0 mg of TZD/kg of BW during the peripartum and postpartum periods (d −7 to +7: 57.9, 57.8, 61.1 ± 0.8 mg/dL and d 0 to +21: 51.6, 49.3, 54.7 ± 1.1 mg/dL, respectively). Plasma concentrations of β-hydroxybutyrate were increased during the peripartum period by TZD administration (9.6, 9.9, 10.2 ± 0.3 mg/dL) but were not affected during the postpartum period. Plasma insulin was not affected by treatment during any time period. Postpartum liver triglyceride content was decreased linearly (11.0, 10.4, 4.2 ± 1.6%) and glycogen content was increased linearly (2.16, 2.38, 2.79 ± 0.19%) by prepartum TZD administration. Prepartum TZD administration linearly increased DMI during the peripartum period (d −7 to +7: 16.1, 17.2, 17.3 ± 0.5 kg/d). Cows administered TZD prepartum maintained higher postpartum body condition scores than control cows (wk 1 through 9: 2.77, 2.89, 3.02 ± 0.05). There was no effect of prepartum TZD on milk yield; however, yields of 3.5% fat-corrected milk (52.2, 54.6, 48.0 ± 1.6 kg/d) and most other milk components were decreased in cows that received 4.0 mg of TZD/kg of BW prepartum. Prepartum TZD administration linearly decreased the number of days to first ovulation (29.3, 28.3, 19.0 ± 3.6 d). These results suggest that prepartum administration of TZD improves metabolic health and DMI of periparturient dairy cows and may decrease reliance on body fat reserves during early lactation.  相似文献   

12.
The present experiment was undertaken to determine the interactions between dietary supplements of folic acid and rumen-protected methionine on lactational performance and on indicators of folate metabolism during one lactation. Fifty-four multiparous Holstein cows were assigned to 9 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet calculated to supply methionine as 1.75% metabolizable protein, equivalent to 70% of methionine requirement, whereas the 3 other cows were fed the same diet supplemented with 18 g of a rumen-protected methionine supplement. Within each diet, the cows received 0, 3, or 6 mg/d of folic acid per kg of body weight. Rumen-protected methionine increased milk total solid concentration but not yield. Supplementary folic acid increased crude protein and casein concentrations in milk of cows fed no supplementary methionine and the effect increased as lactation progressed; it also decreased milk lactose concentration. Folic acid supplements had the opposite effects on milk crude protein, casein, and lactose concentrations in cows fed rumen-protected methionine. Milk and milk component yields and dry matter intake were unchanged. Folic acid supplementation increased serum folates and this response was greater at 8 wk of lactation. It decreased serum cysteine in cows fed rumen-protected methionine, whereas it had no effect in cows fed no supplementary methionine. The highest serum concentrations of cysteine but the lowest of vitamin B(12) were observed at 8 wk of lactation. Serum clearance of folic acid following an i.v. injection of folic acid was slower at 8 wk of lactation. During this period, the high concentrations of serum folates and cysteine, the low serum concentrations of vitamin B(12) and methionine, and the slow serum clearance of folates strongly suggest that the vitamin B(12) supply was inadequate and interfered with folate use. It could explain the limited lactational response to supplementary folic acid observed in the present experiment.  相似文献   

13.
Recent studies demonstrated a high antioxidant capacity for pomegranate components due to their rich bioactive compounds, such as conjugated fatty acids and phenolics. The objective of the present study was, therefore, to assess whether pomegranate seed or pomegranate seed pulp (peel + seed) supplementation could be effective to improve antioxidant status, and hence metabolic profile and performance in periparturient dairy cows. After a 1-wk pretreatment period, Holstein cows (primiparous n = 12, multiparous n = 18) were assigned to 3 dietary treatments from 25 d before expected calving through 25 d postcalving. The dietary treatments included (1) control (CON); (2) diet supplemented with pomegranate seeds (PS; 400 g/cow per day); and (3) diet supplemented with pomegranate seed pulp (PSP; 400 g of seeds/cow per day + 1200 g of peels/cow per day). Compared with CON, supplementation with either PS or PSP had no effects on dry matter intake, rumen fermentation, and plasma concentrations of cholesterol, total protein, globulin, and aspartate amino transferase, but enhanced plasma total antioxidant activity, and lowered triacylglycerol, free fatty acids (FFA), and β-hydroxybutyrate at both pre- and postpartum periods. Plasma concentration of glucose, albumin, malondialdehyde (MDA) and blood superoxide dismutase (SOD) activity were not affected by dietary treatments at prepartum, whereas SOD activity increased and glucose, albumin, MDA, and FFA-to-albumin ratio decreased by feeding both by-products at postpartum period. In contrast to PS, supplementing PSP resulted in a greater decrease in plasma glucose and triacylglycerol concentration and higher increase in SOD activity. Energy- and fat-corrected milk yields were higher in cows fed PSP diet compared with those fed CON or PS diets, but content of milk fat, protein, and lactose were similar across the dietary treatments. These findings indicated that dietary pomegranate by-products supplementation, in particular PSP, could improve antioxidant status, which was associated with a decline in lipid oxidation (FFA and β-hydroxybutyrate) and peroxidation (MDA) and an enhancement in glucose utilization as well as fat-corrected milk yield.  相似文献   

14.
Choline and monensin may be supplemented during the transition period with the objectives of aiding in fat metabolism and improving energy balance, respectively. The objectives of this study were to determine the effects of supplementing rumen-protected choline (RPC) and monensin in a controlled-release capsule (CRC) on metabolism, dry matter intake, milk production, and liver function in transition dairy cattle. Three weeks before expected calving, 182 Holsteins were randomly assigned to receive one of the following: a monensin CRC, 56 g/d of RPC until 28 d in milk, CRC + RPC, or neither supplement (control). Blood samples were collected at enrollment, 1 wk before calving, and in the first and second weeks after calving. Liver biopsies were obtained from multiparous cows randomly selected from each treatment group within 24 h and again 3 wk postpartum. Daily milk production was recorded through 60 d in milk. There were no interactions of the effects of RPC and CRC on any of the outcomes measured. Overall, cows that received RPC produced 1.2 kg/d more milk in the first 60 d of lactation, but this effect was attributable to an increase in milk production of 4.4 kg/d among cows with a body condition score ≥4 at 3 wk before calving; fat cows that received RPC ate 1.1 kg of DM/d more from wk 3 before calving through wk 4 after calving. Monensin supplementation significantly increased serum concentrations of glucose and urea, lowered concentrations of β-hydroxybutyric acid and aspartate aminotransferase in the peripartum period, and increased liver glycogen content at 3 wk into lactation. The metabolic effects of CRC are consistent with previous studies, and the effects on liver are novel. The mechanism by which RPC increased milk production was not revealed in this study and merits further research.  相似文献   

15.
《Journal of dairy science》2023,106(3):1790-1802
Lowering the dietary protein content can reduce N excretions and NH3 emissions from manure and increase milk N efficiency of dairy cows. However, milk yield (MY) and composition can be compromised due to AA deficiency. Methionine and Lys are known as first limiting EAA for dairy cows, and recently His is also mentioned as limiting, especially in grass-based or low-protein diets. To examine this, a trial was conducted with a 3-wk pre-experimental adaptation period (diet 16.5% crude protein), followed by a depletion period of 4 wk, in which 39 cows (average ± standard deviation: 116 ± 29.3 d in milk, 1.8 ± 1.2 lactations, 638 ± 73.2 kg of body weight, and 32.7 ± 5.75 kg MY/d) received a low-protein diet (CTRL) (14.5% crude protein). Then, taking into account parity, His plasma concentration, and MY, cows were randomly assigned to 1 of 3 treatment groups during the rumen-protected (RP) AA period of 7 wk; (1) CTRL; (2) CTRL + RP-Met + RP-Lys (MetLys); (3) CTRL + RP-Met + RP-Lys + RP-His (MetLysHis). Products were dosed, assuming requirements for digestible (d) Met, dLys, and dHis being, respectively, 2.4%, 7.0%, and 2.4% of intestinal digestible protein. In the cross-back period of 5 wk, all cows received the CTRL diet. During the last week of each period, a N balance was conducted by collecting total urine and spot samples of feces. Total feces production was calculated using the inert marker TiO2. Statistical analysis was performed with a linear mixed model with cow as random effect and data of the last week of the pre-experimental period used as covariate for the animal performance variables. No effect of supplementing RP-Met and RP-Lys nor RP-Met, RP-Lys, and RP-His on feed intake, milk performance, or milk N efficiency was observed. However, the plasma AA profile indicated additional supply of dMet, dLys, and dHis. Nevertheless, evaluation of the AA uptake relative to the cow's requirements showed that most EAA (exclusive Arg and Thr) were limiting over the whole experiment. Only dHis was sufficiently supplemented during the RP-AA period due to an overestimation of the diet's dMet and dLys supply in the beginning of the trial. The numerically increased milk urea N and urinary N excretion when RP-Met, RP-Lys, and RP-His were added to the low-protein diet suggest an increased catabolism of the excess His.  相似文献   

16.
Effects of feeding an oil seed supplement treated with formalin upon lipid patterns of blood and synthesis of milk fat were evaluated. Percentages and yields of fatty acids of milk fat with chain lengths between 6 and 16 carbons were decreased while percentages and yields of stearate and linoleate were increased when the lipid supplement was fed. Calculations in cows fed control and supplement, 60% and 80%, respectively, of fatty acids of milk were derived from lipids of blood were supported by arterial-venous differences. Comparisons of the fatty acid compositions of triacylglycerol of plasma and milk fat suggested that triacylglycerol may not be the sole source of linoleate transferred from blood to milk fat. A preliminary evaluation of supplement effects upon lipoprotein patterns of serum indicated two peaks in the low density lipoprotein class and that the increase in total cholesterol of blood caused by feeding lipid supplement is due to increases in cholesterol content of the low density and high density lipoprotein classes.  相似文献   

17.
18.
The liver functionality index (LFI) represents an assessment of transition cow metabolic health by measuring changes in biomarkers associated with liver plasma protein synthesis (albumin), lipoprotein synthesis (cholesterol), and heme catabolism (bilirubin). The present analysis was conducted to determine the role of peripartal rumen-protected Met or choline (CHOL) supplementation on LFI groupings, and to assess relationships with performance, inflammation, oxidative stress status, and plasma AA profiles. A cohort of 40 multiparous Holstein cows that were part of a randomized complete block design with 2 × 2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without) were used. From ?21 d to calving, cows received the same close-up diet and were assigned randomly to each treatment. From calving to 30 d, cows were on the same postpartal diet and continued to receive the same treatments until 30 d. Addition of Met was adjusted daily at 0.08% dry matter of diet and CHOL was fed at 60 g/cow per day. Liver (?10, 7, 20, and 30 d) and blood (?10, 4, 8, 20, and 30 d) samples were harvested for biomarker analyses. Cows were ranked retrospectively and assigned to low (LLFI, LFI <0) and high (HLFI, LFI >0) LFI groups regardless of Met or CHOL supplementation. Compared with cows in LLFI, close-up and lactation DMI, milk yield, milk fat yield, and milk protein yield were greater in HLFI cows. As expected, cows in LLFI had lower plasma cholesterol and albumin but greater bilirubin concentrations around parturition. Plasma haptoglobin concentration was also lower in HLFI cows, but plasma paraoxonase and hepatic total and reduced hepatic glutathione concentrations were greater. Although higher concentrations of His, Met, and Trp, as well as a tendency for greater Ile, were observed in HLFI cows, overall essential AA concentrations did not differ with LFI status. In contrast, overall concentrations of nonessential AA were greater in HLFI cows due to greater circulating concentrations of Ala, Asn, Gln, Pro, and Ser. Similarly, overall concentrations of total AA and total sulfur-containing compounds were greater in cows with HLFI. Feeding Met compared with CHOL led to a tendency for more cows classified as HLFI. Overall, results support the broader application of the LFI in the management of transition cows. In that context, the fact that precalving concentrations of compounds such as reduced glutathione, total sulfur-containing compounds, Met, Tau, and homocysteine differed between HLFI and LLFI independent of Met or CHOL feeding also underscores their potential for monitoring cows that might be at a greater risk of developing health problems after calving. Further studies on the applicability of these biomarkers to monitor transition success appears warranted.  相似文献   

19.
Supplementation of conjugated linoleic acids (CLA) reduces milk fat content in dairy cows and, thus, may be a useful dietary strategy to improve energy balance during early lactation. The present study was performed to investigate whether supplementation of CLA could have adverse effects on hepatic lipid metabolism such as observed in rodents. For this aim, 40 Holstein cows were allotted to 2 groups, which were fed daily 172 g of either a CLA-free, rumen-protected control fat (control group) or a rumen-protected CLA fat supplying 4.3g of cis-9,trans-11 CLA and 3.8 g of trans-10,cis-12 CLA per day (CLA group). To identify potential changes of lipid metabolism, expression of several genes involved in lipid metabolism was determined in liver biopsy samples taken at wk 5 of lactation, using a whole-genome gene chip. In the CLA group, milk fat content and daily milk fat yield were lower than in the control group. Milk yield was higher, whereas fat-corrected milk and energy-corrected milk were lower in the CLA group than in the control group. The CLA group, moreover, had an improved energy balance. To study potential effects of CLA on hepatic lipid metabolism, we considered 6 genes encoding fatty acid transporters, 7 genes involved in intracellular fatty acid transport, 21 and 7 genes, respectively, involved in mitochondrial and peroxisomal β-oxidation, 6 genes of carnitine metabolism, 3 genes of ketogenesis, 21 genes involved in fatty acid and triacylglycerol synthesis, 17 genes involved in cholesterol metabolism, and 20 genes involved in lipoprotein metabolism. None of these genes was differentially regulated between the CLA group and the control group. Gene chip data were confirmed by quantitative PCR analysis, which revealed no difference in the expression of key enzymes of various pathways such as lipogenesis, β-oxidation, and ketogenesis between the 2 groups of cows. In line with those findings, concentrations of triacylglycerols and cholesterol in liver and plasma were not different between the 2 groups of cows. In conclusion, the present study shows that CLA supplementation at a dose effective for milk fat depression does not induce adverse effects on hepatic lipid metabolism in dairy cows.  相似文献   

20.
Two 4 × 4 Latin square trials (4-wk periods; 16 wk total) were conducted to see whether supplementing rumen-protected Met (RPM; fed as Mepron) would allow feeding less crude protein (CP), thereby reducing urinary N excretion, but without losing production. In trial 1, 24 Holsteins were fed 4 diets as total mixed rations containing [dry matter (DM) basis]: 18.6% CP and 0 g of RPM/d; 17.3% CP and 5 g of RPM/d; 16.1% CP and 10 g of RPM/d; or 14.8% CP and 15 g of RPM/d. Dietary CP was reduced by replacing soybean meal with high-moisture shelled corn. All diets contained 21% alfalfa silage, 28% corn silage, 4.5% roasted soybeans, 5.8% soyhulls, 0.6% sodium bicarbonate, 0.5% vitamins and minerals, and 27% neutral detergent fiber. There was no effect of diet on intake, weight gain, or yields of protein, lactose, and solids-not-fat. However, production was greater at 17.3% CP plus RPM and 16.1% CP plus RPM than on the other 2 diets. Apparent N efficiency (milk N:N intake) was greatest on the lowest CP diet containing the most RPM. Linear reductions in milk urea N and urinary N excretion were observed with lower dietary CP. In trial 2, 32 Holsteins were fed 4 diets as total mixed rations, formulated from ingredients used in trial 1 and containing 16.1 or 17.3% CP with 0 or 10 g of RPM/d. On average, cows were calculated to be in negative N balance on all diets because of lower than expected DM intake. There was no effect of RPM supplementation on any production trait. However, higher CP gave small increases in yields of milk, protein, and solids-not-fat and tended to increase DM intake and lactose yield. Apparent N efficiency was greater, and milk urea nitrogen was lower, on 16.1% CP. In trial 1, feeding lower CP diets supplemented with RPM resulted in improved N efficiency and reduced urinary N excretion. However, in trial 2, reducing dietary CP from 17.3 to 16.1% reduced milk secretion, an effect that was not reversed by RPM supplementation at low DM intakes when cows were apparently mobilizing body protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号