首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
Li和Sn掺杂Bi_2(Zn_(1/3)Nb_(2/3))_2O_7陶瓷的结构和介电性能   总被引:3,自引:1,他引:3  
采用固相反应法制备(Bi2-xLix)(Za2/3Nb1.1833Sn0.15)O7陶瓷,研究了Li+替代Bi3+对(Bi2-xLix)(Zn2/3Nb1.1833Sn0.15)O7陶瓷样品结构和介电性能的影响.结果表明:当Li+替代量x≤0.1时,相结构保持单一的单斜焦绿石相;在-30~130℃,介电损耗出现明显的弛豫现象: x=0.025、0.05、0.075和0.1时,样品的介电弛豫峰值温度分别为5、85、100℃和92℃.运用缺陷偶极子模型解释了介电弛豫现象,分析了介电弛豫峰值温度差异的原因,介电弛豫的不对称性符合普适弛豫定律.  相似文献   

2.
用传统的固相法合成了Sm2O3掺杂的Bi2O3-ZnO-Nb2O5(BZN)基陶瓷(Bi1.5-xSmxZn0.5)(Zn0.5Nb1.5)O7(0≤x≤0.6,BSZN),通过XRD、AV2782阻抗分析仪等测试手段对其烧结行为、相结构及介电性能进行了系统研究.结果表明纯BZN陶瓷的结构为立方焦绿石单相;当Sm2O3掺杂量较少(0<x≤0.5)时,样品的相结构仍然保持立方焦绿石单相;随着Sm2O3掺杂量的进一步增加(x≥0.6),样品出现其它相.同时,试样的介电性能随结构的变化而呈现有规律的变化.  相似文献   

3.
研究了Y3 取代的(Bi1.5Zn0.5)(Nb0.5Ti0.5)O7(BZNT)基陶瓷(Bi1.5-xYx Zn0.5)(Nb0.5Ti1.5)O7(0≤x≤1.5,BYZNT)的显微结构和介电性能。采用传统的固相反应法制备陶瓷样品,XRD分析样品的相结构。结果表明:BZNT陶瓷的相结构中主相为立方焦绿石相;在整个取代范围内,BYZNT陶瓷的结构仍然保持主相为立方焦绿石的相结构。同时,随着Y3 取代的增加,晶胞体积减小,介电性能随结构的变化而呈现有规律的变化。其介电性能为:εr≈73-180,tanδ≈1.6%-0.4%,αε≈(-583-89)× 10-6/℃(1MHz)。  相似文献   

4.
采用固相反应法制备(Bi1.5LaxZn0.5—x)(Zn0.5+xNb1.5—x)O7(BZNL,x=0.01~0.07mol)焦绿石型陶瓷。利用X射线衍射仪和高阻抗分析仪(LCR)对样品结构、结晶化学特性与介电性能进行表征。结果表明:所有陶瓷样品均保持单一的立方焦绿石相;随La3+替代量的增加,陶瓷样品中A位阳离子与8b位O′的平均键长r(O′—A)从0.228 36nm增加到0.228 46nm;键价和AV(O′)[Bi3La]、AV(O′)[Bi2ZnLa]、AV(O′)[Bi2La2]、AV(O′)[BiZn2La]随之减小;48f位氧的坐标ζ从0.028 27nm增加到0.029 03nm;样品的介电弛豫峰值温度Tm向低温方向移动,峰值介电常数εm依次减小,当替代量x=0.07mol时,介电弛豫峰值温度Tm降低到最低温度(—107.4℃),峰值介电常数εm为136.35。样品介电弥散性的增强与八面体结构的转变有关。  相似文献   

5.
采用传统固相反应烧结工艺制备(Bi1.5Zn0.5–xSrx)(Ti1.5Nb0.5)O7(BZTN,x=0.30,0.32,0.34,0.36,摩尔分数)铋基焦绿石陶瓷,研究该体系陶瓷的化学组成对物相结构、介电性能和弛豫特性的影响。X射线衍射分析表明:当Sr离子取代量较小时(x0.36),材料的相结构仍然保持立方焦绿石单相结构;当x=0.36时,出现微量SrTiO3杂相,但仍保持立方焦绿石主晶相结构。Sr离子的取代对介电性能产生显著影响:随着Sr离子取代量增加,样品的相对介电常数先增大后减小,介电损耗逐渐减小,并具有较大的正温度系数。观察到铋基焦绿石介电陶瓷的高温介电异常行为:系列样品在200~300℃,均出现明显的介电弛豫现象,并分析与讨论高温介电弛豫性能。  相似文献   

6.
采用固相反应制备(Bi2-xWx)(Zn1/3Nb2/3)2O7陶瓷。研究W6+替代Bi3+对铋锌铌基陶瓷烧结特性、相结构及介电性能的影响。结果表明:掺杂BZN烧结温度略有降低;样品相结构保持单一的单斜焦绿石相,其相结构向高角方向移动;随着W6+替代量的增加,介质材料的介电常数、介电损耗及温度系数都有所变化;当x=0.2时,样品的性能最优,εr=95.39、tanδ=3.89×10-3,αc=228.7×10-6。  相似文献   

7.
研究Na+替代Bi3+、Zr4+替代Nb5+对铋锌铌基陶瓷烧结特性、显微结构和介电性能的影响。结果表明:替代后样品的烧结温度从1000℃降低到880℃;在-30~+130℃,样品温谱出现明显的介电弛豫现象;弛豫峰值温度随Zr4+替代量增加向高温方向移动,弛豫过程的激活能在0.3eV左右。用缺陷偶极子和晶格畸变对Na-Zr掺杂Bi2(Zn1/3Nb2/3)2O7的介电弛豫现象作出解释。  相似文献   

8.
采用固相反应法制备Bi1.5ZnNb1.5–xTaxO7陶瓷,研究了不同掺杂量Ta2O5对Bi2O3–ZnO–Nb2O5陶瓷相结构、晶体化学特性和介电性能的影响。结果表明:当x≤0.1时,样品均保持单一的立方焦绿石结构(α–BZN)。通过对样品结晶化学计算发现,随着Ta2O5掺杂量的增加,晶格常数a逐渐减小,结晶化学参数键价和AV(O')[A4]增大,AV(O)[A2B2]减小,48f(O)坐标ξ增加。在组成样品晶体结构的多面体中,由6个48f(O)组成的八面体结构(BO6)逐渐变得扭曲,而6个48f(O)和2个8b(O')组成的六面体结构逐渐变得规则,向正立方体结构变化。室温下样品的介电常数和损耗随Ta2O5掺杂量的增加而减小,弛豫度逐渐减小。  相似文献   

9.
为获得温度稳定型高频高介材料,通过复相介电组成调控原理,将正温度系数型焦绿石相(Bi1.5Zn0.5)(Zr1.5Nb0.5)O7(BZZN)与负温度系数型(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(BZN)混合构成BZN-BZZN复相材料.研究了该系列陶瓷的物相组成、晶体结构及介电性能随两相组成的变化规律.晶体结构精修获得了复相结构中两相的晶格常数、A-O'键长、B--O键长、O—B—O键角的变化.复相陶瓷的介电性能可通过两相比例有规律地调制,随着BZZN含量增多,(1-x)BZN-xBZZN介电常数εr略有下降,介电常数温度系数逐渐由负值向正值变化.当x=0.7时,获得高介电常数、零温度系数陶瓷材料:εr=123.2,tanδ=7×10-4,αε=5×10-6/℃.  相似文献   

10.
研究了Er3 替代Bi3 对Bi2(Zn1/3Nb2/3)2O7系介质材料结构和性能的影响,并借助X射线、扫描电镜、Agilent4284测试仪对其相结构和介电性能进行分析.研究结果表明:经Er3 替代的BZN陶瓷样品烧结温度升高(从960℃升高到1000℃);随着Er3 替代量的增加,Bi2(Zn1/3Nb2/3)2O7系介质材料的晶粒尺寸、介电常数、介电损耗都有所变化;当替代量x=0.1时,介电性能最佳,介电常数为78.7165,介电损耗为0.00134.  相似文献   

11.
(1-x)Ba(Mg1/3Nb2/3)O3-xBaSnO3陶瓷的微波介电性能   总被引:1,自引:0,他引:1  
用传统陶瓷制备方法制备了(1-x)Ba(Mg1/3Nb2/3)O3-xBaSnO3[0.0≤x≤0.3,(1-x)BMN-xBS]体系微波介质陶瓷,研究了该陶瓷的微观结构和微波介电性能.用X射线衍射仪研究陶瓷的晶体结构.用扫描电镜观察陶瓷的显微结构.用网络分析仪测试陶瓷的微波介电性能.结果表明:晶格常数c和a均随x值的增加而增加;晶格常数比(c/a)随x值的增加而减小.当x≥0.1时,1∶2有序衍射峰消失.陶瓷的平均晶粒尺寸在0.7~2 μm之间.随x值的增加,陶瓷的相对介电常数(εr)和谐振频率温度系数(τr)呈线性减小;品质因数与谐振频率的乘积(Qf)呈非线性变化.当x=0.15时,Qf达到最大值,为86 200 GHz.当x=0.3时,在此体系中可以获得τf接近零的微波介质陶瓷Ba(Sn0.3Mg0.233Nb0.467)O3,其微波介电性能如下:εr=26.1;Qf=42 500GHz;τr=4.3×10-6/℃.  相似文献   

12.
王浩  陈文  刘涛 《硅酸盐学报》2004,32(7):880-883
采用固相合成法制备了(1-y)Ca1-xLa2x/3TiO3-yCa(Mg1/3Nb2/3)O3系列微波介质陶瓷材料.研究了复合系统的微波介电性能和微观结构.研究结果表明在y=0.4~0.6范围内,体系形成了单一的钙钛矿结构.当复合体系组成为0.5Ca0.6La0.267TiO3-0.5Ca(Mg1/3·Nb2/3)O3时,在1 400℃下烧结保温4 h所制备的材料表现出良好的微波介电性能εr=55,Q×f=45 000 GHz(7.6 GHz下),τf=0.04×10-6/℃.  相似文献   

13.
(1-y)Ca1-xLa2x/3TiO3-yCa(Mg1/3Nb2/3)O3复合微波介质陶瓷的研究   总被引:3,自引:0,他引:3  
王浩  陈文  刘涛 《陶瓷学报》2004,25(1):47-51
采用固相合成法制备了 ( 1-y)Ca1 -xLa2x/ 3 TiO3 -yCa(Mg1 / 3 Nb2 / 3 )O3 系列微波介质陶瓷材料 ,研究了复合系统的微波介电性能、烧结性能和微观结构。研究结果表明 :在y =0 .4~ 0 .6范围内 ,体系形成了单一的钙钛矿结构 ;当复合体系组成 0 .5Ca0 .6La0 .2 67TiO3 -0 .5Ca(Mg1 / 3 Nb2 / 3 )O3 时 ,在 14 0 0℃下烧结保温 4小时所得到材料的微波介电性能最佳 ;εf=5 5 ,Q×f =45 0 0 0GHz( 7.6GHz下 ) ,τf=0 .0 4ppm/℃。  相似文献   

14.
采用固相合成法制备了Ba1-3x/2Lax(Mg1/3Ta2/3陶瓷,研究了La掺杂对钽镁酸钡的结构和微波介电性能的影响.结果表明:A位取代能改进其烧结性能.在x≤0.02时,烧结样品为单相的钙钛矿结构,B位离子1:2有序;当x>0.02时出现第二相Ba0.5TaO3.B位离子有序度随着x的增大先增加后减小,在x=0.04时出现最大值.x≤0.02时介电常数变化较小,而后其值逐渐增大.品质因数与谐振频率的乘积(Q×f)值随着x的增大先增大后减小,在x=0.02时取得最大值;谐振频率温度系数(τf)值随着x增大而增大.  相似文献   

15.
Pb(Zn1/3Nb2/3)O3基复相陶瓷的室温介电老化行为   总被引:1,自引:0,他引:1  
研究了Pb(Zn1/3Nb2/3)O3基复相陶瓷的室温介电老化行为与材料烧成制度的关系,性机和介电常数与老化时间的对数值成线性关系,随烧成温度提高和保温时间延长,老化速率增大,老化速率对频率的依存性增加。低温短时间烧结的复相陶瓷的介电老化行为类似于正常铁电体,其老化起因于畴壁运动;而高温长时间烧结的复相陶瓷表现为典型弛豫电体的老化行为,起因于缺陷偶极子与极性微区的相互作用。  相似文献   

16.
研究了烧结助剂BaCu(B2O5)(BCB)对0.4CaTiO3-0.6(Li1/2Nd1/2)TiO3(CLNT)介质陶瓷的烧结特性、相组成、微观形貌及介电性能的影响。结果表明:添加少量的BCB能使CLNT陶瓷的烧结温度从1300℃降低至1050℃。随着BCB添加量的增加,介电常数下降,频率温度系数向负值偏移。添加4wt%BCB的CLNT陶瓷在1050℃烧结2h,获得了最佳的介电性能:εr=96.5,tanδ=0.017,τf=-13.6ppm/℃,满足高介多层片式微波元器件的设计要求。  相似文献   

17.
王颖  黄金亮  顾永军  李谦 《硅酸盐学报》2008,36(12):1700-1704
16CaO-9Li2O-12Sm2O3-63TiO2(CLST)陶瓷的烧结温度接近1 300℃,添加BaCu(B2O5)(BCB)陶瓷粉体使CLST陶瓷的烧结温度降至1050℃.随着烧结温度的升高,样品的体积密度先升高而后趋于稳定,添加质量分数为4?B的CLST陶瓷在1 050℃烧结后得到96%的相对密度.相对介电常数(εr)随着BCB添加量的增大先增大后略有减小.由于液相的存在,介电损耗(tanoδ随着BCB添加量的增大而增大.谐振频率温度系数(tf)与纯CLST陶瓷相比更加近零.添加质量分数为4?B的CLST陶瓷在1 050℃烧结2h后得到良好的介电性能:εr=81,tanδ=0.021,tf=0.5×10-6/℃(1MHz).  相似文献   

18.
(Ba1-xSrx/2Cax/2)TiO3陶瓷的介电弛豫特征和铁电性能   总被引:2,自引:1,他引:1  
采用传统陶瓷的制备方法,制备了(Ba1-xSrx/2Cax/2)TiO3(x=0.10,0.20,0.40,0.50,0.60)铁电陶瓷.X射线衍射分析表明:x=0.20时,陶瓷样品具有三方、四方共存的晶体结构.不同频率下陶瓷样品的介电温谱显示(Ba1-xSrx/2Cax/2)TiO3材料具有弥散相变的特征,在x=0.60时,(Ba1-xSrx/2Cax/2)TiO3陶瓷具有典型的弛豫铁电体特征.研究发现:当x=0.20时,(Ba1-xSrx/2·Cax/2)TiO3陶瓷材料的矫顽电场达到极小值.基于极性纳米微区理论的观点,进一步研究了弛豫铁电体和具有弥散相变铁电体两者之间的关系,结果表明:仅仅当实验频率和极性纳米微区的弛豫频率相近时,在弥散相变温区内介电弛豫行为才能被观察到.  相似文献   

19.
研究了MnCO3,BaZrO3对 0 .35Ba(Zn1 /3Nb2 /3)O3(BZN) -0 .65Sr(Zn1 /3Nb2 /3)O3(SZN)陶瓷介电性能的影响。研究表明 :添加MnCO3,BaZrO3时 ,对陶瓷的烧结均起促进作用 ,增大介电常数。加入 1% (质量分数 )的MnCO3可使陶瓷具有较小的介质损耗 ,同时MnCO3对陶瓷的介电常数温度系数具有正向调整作用。加入BaZrO3后通过生成液相而减少了第二相Ba5Nb4O1 5,BaNb2 O6 的生成。所制备的 ( 0 .35BZN -0 .65SZN) 0 .1%MnCO3陶瓷的εr≈ 43.6,αε≈ -8× 10 - 6 /K ,tanδ =0 .6× 10 - 4 ,且烧结温度低于 130 0℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号