首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Thermal Engineering》2007,27(2-3):299-305
Simulation studies on a two-stage flash intercooling transcritical carbon dioxide heat pump cycle are presented. Sub-critical and super-critical thermodynamic and transport properties of carbon dioxide are calculated employing an exclusive precision property code based on recently published correlations. Results exhibit that flash intercooling technique is not economical with CO2 refrigerant unlike NH3 as the refrigerant. COP is considerably lower than that of the single cycle for a given gas cooler and evaporator temperature. There is no optimum inter-stage pressure as well. However, a marginal increase in COP occurs as inter-stage pressure decreases from the classical estimate of geometric mean of gas cooler and evaporator pressure. It is observed that incorporation of desuperheating of vapour in the intercooler almost doubles the mass flow rate in the second stage which can be attributed to the large flashing that occurs in the intercooler; this increase depends on the discharge temperature from the first stage and mass flow rate of refrigerant flow in the evaporator. Compressor isentropic efficiency shows marginal influence on system performance.  相似文献   

2.
In this paper, a new configuration of ejector‐expansion transcritical CO2 (TRCC) refrigeration cycle is presented, which uses an internal heat exchanger and intercooler to enhance the performance of the new cycle. The theoretical analysis on the performance characteristics was carried out for the new cycle based on the first and second laws of thermodynamics. It was found that, compared with the conventional transcritical CO2 cycle and ejector‐expansion transcritical CO2 cycle, the simulation results show that the coefficient of performance and second law efficiency of the new cycle were increased by about 55.5 and 26%, respectively, under the operating conditions that evaporator temperature is 10°C, gas cooler outlet temperature is 40°C and gas cooler pressure is optimum pressure. It is also concluded that the entrainment ratio for the new ejector‐expansion TRCC cycle is on average 35% higher than that of the conventional ejector‐expansion TRCC cycle. The analysis results are of significance to provide theoretical basis for design optimization of the transcritical CO2 refrigeration cycle with an ejector‐expansion device, internal heat exchanger and intercooler. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Because of the global warming impact of hydro fluorocarbons, the uses of natural refrigerants in automotive and HVAC industries have received worldwide attention. CO2 is the most promising refrigerant in these industries, especially the transcritical CO2 refrigeration cycle. The objective of this work is to identify the main factors that affect two‐stage compression transcritical CO2 system efficiency. A second law of thermodynamic analysis on the entire two‐stage CO2 cycle is conducted so that the exergy destruction of each system component can be deduced and ranked, allowing future efforts to focus on improving the components that have the highest potential for advancement. The inter‐stage pressure is used as a variable parameter in the analysis study. The second law efficiency, coefficient of cooling performance and total exergy destruction of the system variations with the inter‐stage pressure are presented graphically. It was concluded that there is an optimum inter‐stage pressure that maximizes both first law and second law efficiencies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Y.B. Tao  Y.L. He  W.Q. Tao 《Applied Energy》2010,87(10):3065-3072
The experimental system for the transcritical CO2 residential air-conditioning with an internal heat exchanger was built. The effects of working conditions on system performance were experimentally studied. Based on the experimental dada, the second law analysis on the transcritical CO2 system was performed. The effects of working conditions on the total exergetic efficiency of the system were investigated. The results show that in the studied parameter ranges, the exergetic efficiency of the system increases with the increases of gas cooler side air inlet temperature, gas cooler side air inlet velocity and evaporating temperature. And it will decrease with the increases of evaporator side air inlet temperature and velocity. Then, a complete exergetic analysis was performed for the entire CO2 transcritical cycle including compressor, gas cooler, expansion valve, evaporator and internal heat exchanger under different working conditions. The average exergy loss in gas cooler is the highest one under all working conditions which is about 30.7% of the total exergy loss in the system. The second is the average exergy loss in expansion valve which is about 24.9% of the total exergy loss, followed by the exergy losses in evaporator and compressor, which account for 21.9% and 19.5%, respectively. The exergy loss in internal heat exchanger is the lowest one which is only about 3.0%. So in the optimization design of the transcritical CO2 residential air-conditioning system more attentions should be paid to the gas cooler and expansion valve.  相似文献   

5.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the effects of the operating parameters on the cooling performance that can be applied for a transcritical CO2 automotive air conditioning system. The experimental conditions of the performance tests for a CO2 system and components such as a gas cooler and an evaporator were suggested to compare with the performance of each at the standardized test conditions. This research presents experimental results for the performance characteristics of a CO2 automotive air conditioning system with various operating conditions such as different gas cooler inlet pressures, compressor speeds and frontal air temperatures/flow rates passing through the evaporator and the gas cooler. Experimental results show that the cooling capacity was more than 4.9 kW and coefficient of performance (COP) was more than 2.4, at each optimum pressure of gas cooler inlet during idling condition. Also, the cooling capacity was about 7.5 kW and COP was about 1.7 at the optimum pressure of gas cooler inlet during driving condition when air inlet temperatures of gas cooler and evaporator were 45 °C and 35 °C, respectively. Therefore, we concluded that the automotive air conditioning system using CO2 refrigerant has good performance. This paper also deals with the development of optimum high pressure control algorithm for the transcritical CO2 cycle to achieve the maximum COP.  相似文献   

7.
In this paper, a new two-stage configuration of ejector-expansion transcritical CO2 (TRCC) refrigeration cycle is presented, which uses an internal heat exchanger and intercooler to enhance the performance of the new cycle. The theoretical analysis on the performance characteristics was carried out for the new cycle based on the first and second laws of thermodynamics. Based on the simulation results, it is found that, compared with the conventional two-stage transcritical CO2 cycle, the COP and second law efficiency of the new two-stage cycle are about 12.5–21% higher than that of conventional two-stage cycle. It is also concluded that, the performance of the new two-stage transcritical CO2 refrigeration can be significantly improved based on the presented new two-stage cycle. Hence the new two-stage refrigeration cycle is a promising refrigeration cycle from the thermodynamically and technical point of views. A regression analysis in terms of evaporator and gas cooler exit temperatures has been used, in order to develop mathematical expressions for maximum COP, optimum discharge and inter-stage pressures and entrainment ratio.  相似文献   

8.
Use of thermoelectric subcooler is one of the techniques to improve the performance of transcritical CO2 cycle. Thermodynamic analyses and optimizations of transcritical CO2 refrigeration cycle with thermoelectric subcooler are presented in this paper. Further, the effects of various operating parameters on cycle performances are studied. It is possible to optimize current supply, discharge pressure, and CO2 subcooling simultaneously based on maximum cooling COP for thermoelectrically enhanced transcritical CO2 refrigeration cycle to get best performance. Results show that thermoelectric current supply, COP improvement, and discharge pressure reduction increase with increase in cycle temperature lift, with maximum values of 11 A, 25.6%, and 15.4%, respectively, for studied ranges. Use of thermoelectric subcooler in CO2 refrigeration system not only improves the cooling COP, also reduces the system high‐side pressure, compressor pressure ratio, and compressor discharge temperature, and enhances the volumetric cooling capacity. Component‐wise irreversibility distribution shows similar trend with basic CO2 cycle, although values are lower leading to higher second law efficiency. Cooling capacity may be enhanced by increasing the current supply for the same thermoelectric configuration with penalty of COP. Study reveals that thermoelectrically enhanced CO2 refrigeration cycle yields significant performance improvement especially for higher‐cycle temperature lift. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In order to optimize and control transcritical CO2 refrigeration cycle, a mathematical model was developed to simulate the system performance. The simulation results show that a maximum COP exists at the optimal heat rejection pressure not only for throttle valve cycle but also for expander cycle. Also, the optimal heat rejection pressures of the throttle valve cycle are greater than those of the expander cycle under the same condition. In order to further obtain correlation of the optimal heat rejection pressure for transcritical CO2 expander cycle, it is necessary to analyze the impact degree of compressor efficiency, expander efficiency, gas cooler outlet temperature and evaporation temperature. Based on the simulation results, the values of the optimal heat rejection pressure for the expander cycle were regressed in terms of gas cooler outlet temperature and evaporation temperature at given compressor efficiency and expander efficiency. Finally, two types of polynomial correlations were obtained. One is cubic form, with an average deviation of less than 0.5% and the other is simplified form, with an average deviation of less than 1%. It is, therefore, convenient to use either correlation to simulate the performance of transcritical CO2 expander cycle.  相似文献   

10.
In order to optimize and control transcritical CO2 refrigeration cycle, a mathematical model was developed to simulate the system performance. The simulation results show that a maximum COP exists at the optimal heat rejection pressure not only for throttle valve cycle but also for expander cycle. Also, the optimal heat rejection pressures of the throttle valve cycle are greater than those of the expander cycle under the same condition. In order to further obtain correlation of the optimal heat rejection pressure for transcritical CO2 expander cycle, it is necessary to analyze the impact degree of compressor efficiency, expander efficiency, gas cooler outlet temperature and evaporation temperature. Based on the simulation results, the values of the optimal heat rejection pressure for the expander cycle were regressed in terms of gas cooler outlet temperature and evaporation temperature at given compressor efficiency and expander efficiency. Finally, two types of polynomial correlations were obtained. One is cubic form, with an average deviation of less than 0.5% and the other is simplified form, with an average deviation of less than 1%. It is, therefore, convenient to use either correlation to simulate the performance of transcritical CO2 expander cycle.  相似文献   

11.
Optimization studies along with optimum parameter correlations are presented in this article for a vortex tube expansion transcritical CO2 refrigeration cycle with two cycle layouts based on the Maurer model (1999) and the Keller model (1997). A simple thermodynamic model is proposed and used for vortex tube analysis. Finally, the COP improvement and effect on optimum discharge pressure by using vortex tube in transcritical CO2 cycle instead of expansion valve are presented. The results show that the effect of cold mass fraction and inlet water temperature to desuperheater (used to cool hot gas from vortex tube) on the cycle optimization is negligible. The Maurer model is better than the Keller model in terms of moderately more COP improvement and lower cost due to less components. The use of a vortex tube is more effective for higher gas cooler exit temperature for both models. Results show that the vortex tube expansion transcritical CO2 cycle for the Maurer model can give higher COP improvement for lower cooling temperature applications; however the trend is reverse for the Keller model.  相似文献   

12.
Optimization studies along with optimum parameter correlations, using constant area mixing model are presented in this article for ejector-expansion transcritical CO2 heat pump cycle with both conventional and modified layouts. Both the energetic and exergetic comparisons between valve, turbine and ejector-expansions-based transcritical CO2 heat pump cycles are also studied for simultaneous cooling and heating applications. Performances for conventional layouts are presented by maximum COP, optimum discharge pressure and corresponding entrainment ratio and pressure lift ratio of ejector, whereas for modified layout by maximum COP, optimum discharge pressure and corresponding pressure lift ratio. The optimization for modified layout can be realized for certain entrainment ratio, evaporator and gas cooler exit temperature combinations. Considering the trade-off between the system energetic and exergetic performances, and cost associated with expansion devices, the ejector may be the promising alternative expansion device for transcritical CO2 heat pump cycle.  相似文献   

13.
CO_2气体冷却器的结构和换热效果对CO_2跨临界循环影响较大.为设计出高效的气体冷却器,有必要对其性能进行模拟和优化.采用有限单元法建立了小型CO_2热泵热水器中气体冷却器稳态分布参数模型,分别对其CO_2侧和水侧的流动与换热进行了数值仿真,运用该模型分别针对CO_2侧进口压力对气体冷却器设计管长和CO_2换热性能的影响进行了分析.结果表明,CO_2侧进口压力在8~12 MPa时,从8 MPa开始每递增1 MPa,换热系数峰值比压力增加1 MPa前的依次递减约57.14%、33.33%、25.00%、9.83%,设计管长比压力增加1 MPa前的依次递减约55.60%、18.75%、11.33%、9.09%.综合考虑管道耗材与CO_2换热能力,针对小型CO_2热泵系统,气体冷却器CO_2侧进口压力取8.5~10 MPa较合理.研究可为气体冷却器设计提供理论指导.  相似文献   

14.
Mortaza Yari  S.M.S. Mahmoudi 《Energy》2011,36(12):6839-6850
In this paper, two new CO2 cascade refrigeration cycles are proposed and analyzed. In both these cycles the top cycle is an ejector-expansion transcritical cycle and the bottom cycle is a sub-critical CO2 cycle. In one of these proposed cycles the waste heat from the gas cooler is utilized to drive a supercritical CO2 power cycle making the plant a combination of three cycles. Using the first and second laws of thermodynamics, theoretical analyses on the performance characteristics of the cycles are carried out. Also a parametric study is conducted to optimize the performance of each cycle under various operating conditions. The proposed cycles exhibit a reasonable value of COP (coefficient of performance) with a much less value of compressor discharge temperature, compared to the conventional cycles.  相似文献   

15.
《Energy Conversion and Management》2005,46(13-14):2053-2067
This paper presents the exergetic analysis and optimization of a transcritical carbon dioxide based heat pump cycle for simultaneous heating and cooling applications. A computer model has been developed first to simulate the system at steady state for different operating conditions and then to evaluate the system performance based on COP as well as exergetic efficiency, including component wise irreversibility. The chosen system includes the secondary fluids to supply the heating and cooling services, and the analyses also comprise heat transfer and fluid flow effects in detail. The optimal COP and the exergetic efficiency were found to be functions of compressor speed, ambient temperature and secondary fluid temperature at the inlets to the evaporator and gas cooler and the compressor discharge pressure. An optimization study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on heat transfer area has been conducted. The exergy flow diagram (Grassmann diagram) shows that all the components except the internal heat exchanger contribute significantly to the irreversibilities of the system. Unlike a conventional system, the expansion device contributes significantly to system irreversibility. Finally, suggestions for various improvement measures with resulting gains have been presented to attain superior system performance through reduced component irreversibilities. This study is expected to offer useful guidelines for system design and its optimisation and help toward energy conservation in heat pump systems based on transcritical CO2 cycles.  相似文献   

16.
In this paper, a transcritical carbon dioxide heat pump system driven by solar‐owered CO2 Rankine cycle is proposed for simultaneous heating and cooling applications. Based on the first and second laws of thermodynamics, a theoretical analysis on the performance characteristic is carried out for this solar‐powered heat pump cycle using CO2 as working fluid. Further, the effects of the governing parameters on the performance such as coefficient of performance (COP) and the system exergy destruction rate are investigated numerically. With the simulation results, it is found that, the cooling COP for the transcritical CO2 heat pump syatem is somewhat above 0.3 and the heating COP is above 0.9. It is also concluded that, the performance of the combined transcritical CO2 heat pump system can be significantly improved based on the optimized governing parameters, such as solar radiation, solar collector efficient area, the heat transfer area and the inlet water temperature of heat exchange components, and the CO2 flow rate of two sub‐cycles. Where, the cooling capacity, heating capacity, and exergy destruction rate are found to increase with solar radiation, but the COPs of combined system are decreased with it. Furthermore, in terms of improvement in COPs and reduction in system exergy destruction at the same time, it is more effective to employ a large heat transfer area of heat exchange components in the combined heat pump system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Recent research has been focused on the utilization of low‐grade waste heat, and the industrial high‐temperature heat pump can be an alternative technology because of its simplicity and outstanding performance. However, the use of carbon dioxide in vapor compression heat pumps with high‐temperature heat source is still to be optimized because of low critical temperature. In the present study, a system for waste heat recovery from the steam condenser using CO2 vapor compression cycle is modeled from the energetic, exergetic, and economic perspectives, and optimized system performances are obtained by dual‐objective Jaya algorithm. Potential optimized operating strategies for transcritical cycle are discussed by the parametric study and Ts diagrams. The transcritical and supercritical cycles are further compared with each other considering different steam temperatures. The optimization strategies of transcritical cycle are based on the main purpose to improve the evaporation potential and achieve transcritical cycles with the critical point inside the closed region surrounded by the process curves, so lower superheating degree and minimum temperature difference of gas cooler, higher evaporating temperature, and more return water cooling should be employed in order to promote the cycle performances. In comparison with transcritical cycles performances, the supercritical operation shows superior performances, which are less sensitive to the variations of return water temperature.  相似文献   

18.
Jun Lan Yang  Yi Tai Ma  Min Xia Li  Jun Hua 《Energy》2010,35(12):4812-4818
In this paper, a mathematical model for steady-state simulation of transcritical CO2 water-to-water heat pump system with an expander has been developed. It is used to simulate the performance of transcritical CO2 system with CO2 expander prototype. Simulated results are compared with experimental data to verify the accuracy of the simulation model. The comparison results show the average deviation of about 15% for COPc(cooling coefficient of performance) and COPh(heating coefficient of performance), about 17% for cooling and heating capacity at experimental high pressure ranges. With this model, which has been validated in a limited high pressure range, the influence of water mass flow rate and water inlet temperature of both evaporator and gas cooler on the performance of transcritical CO2 expander system is analyzed. The results show that decreasing inlet temperature and increasing mass flow rate of cooling water cannot only increase the system performance but also reduce the optimal heat rejection pressure, at which the maximum COP (coefficient of performance) can be obtained. For chilling water, increasing its inlet temperature and mass flow rate is favorable for increasing the system performance, while the optimal heat rejection pressure does not vary very much.  相似文献   

19.
《Applied Thermal Engineering》2007,27(2-3):381-388
The present study describes a theoretical analysis of a transcritical CO2 ejector expansion refrigeration cycle (EERC) which uses an ejector as the main expansion device instead of an expansion valve. The system performance is strongly coupled to the ejector entrainment ratio which must produce the proper CO2 quality at the ejector exit. If the exit quality is not correct, either the liquid will enter the compressor or the evaporator will be filled with vapor. Thus, the ejector entrainment ratio significantly influences the refrigeration effect with an optimum ratio giving the ideal system performance. For the working conditions studied in this paper, the ejector expansion system maximum cooling COP is up to 18.6% better than the internal heat exchanger cycle (IHEC) cooling COP and 22.0% better than the conventional vapor compression refrigeration cycle (VCRC) cooling COP. At the conditions for the maximum cooling COP, the ejector expansion cycle refrigeration output is 8.2% better than the internal heat exchanger cycle refrigeration output and 11.5% better than the conventional cycle refrigeration output. An exergy analysis showed that the ejector expansion cycle greatly reduces the throttling losses. The analysis was also used to study the variations of the ejector expansion cycle cooling COP for various heat rejection pressures, refrigerant temperatures at the gas cooler exit, nozzle efficiencies and diffuser efficiencies.  相似文献   

20.
Being a low critical temperature fluid, CO2 transcritical system offers low COP for a given application. Parallel compression economization is one of the techniques to improve the COP for transcritical CO2 cycle. An optimization study of transcritical CO2 refrigeration cycle with parallel compression economization is presented in this paper. Further, performance comparisons of three different COP improvement techniques; parallel compression economization alone, parallel compression economization with recooler and multistage compression with flash gas bypass are also presented for chosen operating conditions. Results show that the parallel compression economization is more effective at lower evaporator temperature. The expression for optimum discharge pressure has been developed which offers useful guideline for optimal system design and operation. Study shows that the parallel compression with economizer is promising transcritical CO2 cycle modifications over other studied cycle configurations. A maximum improvement of 47.3% in optimum COP is observed by employing parallel compression economization for the studied ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号