共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐phase flow pattern and friction characteristics for an air–water system in a 3.17 mm smooth tube are reported in this study. The range of mass flux is between 50 and 700 kg/m2s. The experimental data show that the two‐phase friction multipliers are strongly related to the flow pattern. For a stratified‐wavy flow pattern, a mass‐flux dependence of the two‐phase multipliers is seen. For a non‐stratified flow pattern, the two‐phase frictional multipliers are comparatively independent of mass flux. Correlations of the frictional multipliers are developed for stratified and non‐stratified flow. To use the appropriate correlation in different regime, a simple criterion is proposed. 相似文献
2.
以氮气为气相介质,以不同表面张力的液体(纯水、质量分数0.01%SDS溶液、乙醇)为液相介质,对矩形微通道(500μm×500μm)内气液二相流压力降进行可视化实验研究。实验数据表明:二相流流型对压力降的影响占主导地位,二相流压力降随着液体表面张力的增加而减小。二相摩擦压力梯度的测量数据与分相模型,匀相流模型理论预测值进行对比,平均偏差分别为34.3%和19.6%,预测效果不佳。通过对Chisholm关系式进行修正,得出新的预测模型,平均偏差为13.7%。结果表明:修正后的压降模型能较好地预测弹状流,弹状环状流和环状流实验结果。 相似文献
3.
Ponnan Ettiyappan Jagadeesh Babu Appusamy Arunagiri Thanapalan Murugesan 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2006,81(1):70-81
The dependency of pressure drop and liquid holdup on phase velocities, geometry of the column and packing materials as well as on the physical properties have been analyzed. Our experimental data (825 data points obtained using four liquid systems and three different particles) along with those of the available literature (776 data point from five different sources) were used for the analysis. The applicability and the limitations of the literature correlations were evaluated using the available data. Based on the analysis, new correlations for the estimation of pressure drop and liquid holdup, valid for low and high interaction regimes have been developed using the available data, with a wide range of variables. Copyright © 2005 Society of Chemical Industry 相似文献
4.
It was observed in the experimental investigations that the concurrent upflow of air‐Monoethanol amine system through the packed bed gave higher pressure drop in bubble flow regime than the air‐water system. But when the flow regime changed to spray flow, air‐water system showed higher pressure drop than the other. This phenomenon was observed for the two column packing used in this study. An attempt is made to explain this phenomenon. 相似文献
5.
以氮气和去离子水为研究体系,采用混合均质模型,在内径分别为900μm和500μm的圆形微通道中针对微通道反应器内气液二相流的压降进行研究。分析了黏度、气液表观速度等因素对微通道反应器中气液二相摩擦压降的影响。结果表明:均相流模型与分相流模型在微通道反应器内适用性均有限;采用Mc Adams黏度公式对微通道内的压降进行理论计算,其结果与实际测量所得压降值吻合良好;微通道反应器中的气液二相摩擦压降随气液二相表观速度的增大而增大;将实验结果与分相流模型的预测值进行比较,分相流模型中Lockhart-Martinelli关系式不能很好地预测微通道中气液二相流的摩擦压降。 相似文献
6.
Flow patterns of liquid‐liquid two‐phase fluids in a new helical microchannel device were presented in this paper. Three conventional systems were considered: kerosene‐water, n‐butyl acetate‐water, and butanol‐water. Six different flow patterns, slug flow, continuous parallel flow, discontinuous deformation parallel flow, discontinuous deformation parallel‐droplet flow, droplet‐slug flow, and filiform‐droplet flow, were observed. The influence of interfacial tension, microchannel structure, and rotation rate on two‐phase flow patterns were studied, and a universal flow pattern map was presented and discussed. The systems without mass transfer (0.1 g/g (10 %) tri‐n‐butyl phosphate (TBP)‐water, 0.2 g/g (20 %) TBP‐water, and 0.8 g/g (80 %) TBP‐water) and the system with mass transfer (0.8 g/g (80 %) TBP‐0.62 g/g (62 %) H3PO4) were used to verify the validity of the proposed universal flow pattern map in predicting flow patterns. The results showed that the former compared with the latter can be predicted more accurately by the universal flow pattern map. 相似文献
7.
The purpose of this work is to seek the key factors influencing the pressure drop calculation for oil‐water separated flow using a one dimensional two‐fluid model. Closure relations published for the two‐fluid model such as interface configuration, wall, and interfacial shear stress correlations are summarized. Interface configurations are established by numerically solving the Young‐Laplace equation, correlated with the Bond number, contact angle, and water holdup. Results show that the interface transforms from concave to convex with the enlargement of the contact angle and becomes flat as the Bond number increases. For the pressure drop calculation, a limited difference of predicted accuracy between the curve and flat interface is found. Discussions of both the wall and interfacial friction factor correlation on the pressure drop calculation are performed. In contrast to the effect of the interfacial friction factor, the correlation of the wall friction factor is found to have more contributions. We validate the prediction accuracy of different wall frictions factors using eight groups of published experiment results, and one correlation is recommended and being further extended. 相似文献
8.
Phase inversion and its associated phenomena are experimentally investigated in co‐current upward and downward oil‐water flow in a vertical stainless steel test section (38 mm I.D.). Oil (ρo=828 kg/m3, µo=5.5 mPa s) and tap water are used as test fluids. Two inversion routes (w/o to o/w and o/w to w/o) are followed in experiments where either the mixture velocity is kept constant and the dispersed phase fraction is increased (type I experiments), or the continuous phase flow rate is kept constant and that of the dispersed phase is increased (type II experiments). By monitoring phase continuity at the pipe centre and at the wall it was found that phase inversion does not happen simultaneously at all locations in the pipe cross‐section. In type I experiments, the velocity ratios (Uo/Uw) where complete inversion appeared acquired the same constant value in both flow directions, although the phase inversion points, based on input phase fractions, were different. In contrast to previous results in horizontal flows, frictional pressure gradient was found to be minimum at the phase inversion point. The interfacial energies of the two dispersions before and after phase inversion, calculated from the measured drop sizes, were found to be different in contrast to the previously suggested criterion of equal energies for the appearance of the phenomenon. In type II experiments the phase inversion point was found to depend on mixture velocity for low and medium velocities but not for high ones. In all cases studied an ambivalent region, commonly reported for inversion in stirred vessels, was not observed. 相似文献
9.
10.
11.
Hydrodynamics of gas–liquid flow in micropacked beds: Pressure drop,liquid holdup,and two‐phase model 下载免费PDF全文
Jisong Zhang Andrew R. Teixeira Lars Thilo Kögl Lu Yang Klavs F. Jensen 《American Institute of Chemical Engineers》2017,63(10):4694-4704
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017 相似文献
12.
A unidirectional, two‐fluid model based on the volume‐average mass and momentum balance equations was developed for the prediction of two‐phase pressure drop and external liquid hold‐up in horizontally positioned packed beds experiencing stratified, annular and dispersed bubble flow regimes. The so‐called slit model drag force closures were used for the stratified and annular flow regimes. In the case of dispersed bubble flow regime, the liquid‐solid interaction force was formulated on the basis of the Kozeny‐Carman equation by taking into account the presence of bubbles in reducing the available volume for the flowing liquid. The gas‐liquid interaction force was evaluated by using the respective solutions of drag coefficient for an isolated bubble in viscous and turbulent flows. The proposed drag force expressions for the different flow patterns occurring in the bed associated with the two‐fluid model resulted in a predictive method requiring no adjustable parameter to describe the hydrodynamics for horizontal two‐phase flow in packed beds. 相似文献
13.
The two‐phase flow pattern for air‐water mixtures inside a 6.9 mm U‐tube is reported to have curvature ratios of 3?7.1. At a lower total mass flux of 50 kg/m2·s and a quality of 0.1, or at a larger curvature ratio of 7.1, no influence on the flow patterns is seen. However, if the curvature ratio is reduced to 3, the flow pattern in the recovery region just after the return bend is temporally turned from stratified flow into annular flow. For a quality larger than 0.4, the annular flow pattern prevails in the entire tube. For G = 400 kg/m2·s and x < 0.01, the size of the plug in the downstream is usually larger than that in the upstream due to the coalesce in the return bend. This coalescence phenomenon continues to further increase the total mass flux at the lower quality region. For a total mass flux above 500 kg/m2·s, the bubbly flow pattern in the upstream region may become intermittent. 相似文献
14.
Well defined experiments and numerical analyses are conducted to determine the importance of dynamic effect in capillary pressure relationships for two‐phase flow in porous media. Dynamic and quasi‐static capillary pressure‐saturation (Pc‐Sw) and, ?Sw/?t‐t curves are determined. These are then used to determine the dynamic effects, indicated by a dynamic coefficient (τ) in the porous domains which establishes the speed at which flow equilibrium (?Sw/?t = 0) is reached. τ is found to be a nonlinear function of saturation which also depends on the medium permeability. Locally determined τ seems to increase as the distance of the measurement point from the fluid inlet into the domain increases. However, the functional dependence τ‐Sw follows similar trends at different locations within the domain. We argue that saturation weighted average of local τ‐Sw curves can be defined as an effective τ‐Sw curve for the whole domain which follows an exponential trend too. © 2012 The Authors. AIChE Journal, published by Wiley on behalf of the AIChE. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. AIChE J, 58: 3891–3903, 2012 相似文献
15.
New experimental results on pressure loss for the single and two‐phase gas‐liquid flow with non‐Newtonian liquids in helical coils are reported. For a constant value of the curvature ratio, the value of the helix angle of the coils is varied from 2.56° to 9.37°. For single phase flow, the effect of helix angle on pressure loss is found to be negligible in laminar flow regime but pressure loss increases with the increasing value of helix angle in turbulent flow conditions. On the other hand, for the two‐phase flow, the well‐known Lockhart‐Martinelli method correlates the present results for all values of helix angle (2.56‐9.37°) satisfactorily under turbulent/laminar and turbulent/turbulent conditions over the following ranges of variables as: 0.57 ≤ n′ ≤ 1; Re′ < 4000; Rel < 4000; Reg < 8000; 8 ≤ x ≤ 1000 and 0.2 ≤ De′ ≤ 1000. 相似文献
16.
The effect of tube diameter on two‐phase flow patterns was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6, and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01–50 and 0.01–3 m/s, respectively. The gas and liquid flow rates were measured and the two‐phase flow pattern images were recorded using high‐speed CMOS camera. The flow patterns observed were dispersed bubbly, bubbly, slug, slug‐annular, wavy‐annular, stratified, and annular flows. These flow patterns were not observed in all the test diameters, but were found to be unique to particular tube diameters, confirming the effect of tube diameter on the flow pattern. The data obtained were compared to existing experimental data and flow regime transition maps which show generally reasonable overall agreement at the larger diameters, but significant differences were observed with the smaller diameter tubes. 相似文献
17.
Experimental results on flow pattern, hold–up and pressure drop are presented for cocurrent upward and downward air water flow in helical coils. A tube of 0.01 m internal diameter was used and the ratio of coil to tube diameter was varied from 11 to 156.5. Water flow rate was varied from 4.9 × 10-6 m3/s to 92 × 10-6 m3/s while the range of gas flow rate covered was 83 × 10-6 m3/s to 610 × 10-6 m3/s. A new mechanistic approach is proposed to correlate pressure drop data in coils. The proposed model retains the identity of each phase and separately accounts for the effects of curvature and tube inclination resulting from the torsion of the tube. This makes it possible to use a single model to predict pressure drop for both upward and downward two–phase flow in coiled tubes. Required correlations for hold–up, interfacial friction factor and friction factors for individual phases are provided. 相似文献
18.
Two‐phase liquid flows at +5° inclination from the horizontal were studied experimentally for mixture velocities between 0.7 and 2.5 m/s and input oil fractions between 10% and 90%. The results were compared with a two‐fluid model that includes entrainment. The investigations were performed in a 38‐mm ID stainless steel test section, with water and oil as test fluids. Dual continuous flow (both phases remain continuous with inter‐dispersion) prevailed, while the two‐phase pressure gradient was found lower than the single‐phase oil or water. At low mixture velocities the velocity ratio increased with oil fraction while at high ones it decreased. Compared to horizontal flow, water holdup was higher and frictional pressure gradient lower. 相似文献
19.
Gas/liquid/liquid three‐phase flow patterns and bubble/droplet size laws in a double T‐junction microchannel 下载免费PDF全文
Kai Wang Kang Qin Yangcheng Lu Guangsheng Luo Tao Wang 《American Institute of Chemical Engineers》2015,61(5):1722-1734
The double T‐junction microchannel is a classical microstructured chemical device used to generate gas/liquid/liquid three‐phase microflows. An experimental study that focused on the three‐phase flow phenomena and bubble/droplet generation rules in a double T‐junction microchannel was introduced. Based on the published knowledge of gas/liquid and liquid/liquid two‐phase microflows, new flow patterns were carefully defined: bubble cutting flow, spontaneous break‐up and bubble cutting coupling flow, and bubble/droplet alternate break‐up flow. According to the classical correlations of bubble and droplet volumes and their generation frequency ratio, the operating criteria for creating different three‐phase flow patterns were established and a model for the dimensionless average bubble and droplet volumes in the three‐phase microflows was developed. These various three‐phase microflows have great application potential in material science and flow chemistry synthesis. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1722–1734, 2015 相似文献
20.
New data on the two phase pressure drop for the concurrent upflow of air-liquid (Newtonian and non-Newtonian) mixtures through packed beds of spherical and non-spherical particles are presented. The results for single phase flows and for the air-Newtonian liquid mixtures have been used both to gauge the overall accuracy of the present experimental methods and to evaluate the validity of the predictive expressions available in the literature. The two phase pressure drop has been measured as a function of the liquid and gas flow rates, column diameter and the power law model constants. Depending upon a suitable combination of the gas and liquid fluxes and the power law index, the two phase pressure drop may be less than its value for the flow of liquid alone. A simple expression is proposed which correlates the present set of experiments (nearly 500 data points) with satisfactory levels of accuracy over the following ranges of conditions: 0.54 ≤ n ≤ 1; 0.001 ≤ ReL* ≤ 50; 3.7 ≤ ReG ≤ 177 and 0.9 ≤χ (Lockhart-Martinelli parameter) ≤ 104. 相似文献