首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to evaluate the performance of horizontal GSHP by considering various system parameters for winter climatic condition of Bursa, Turkey. For this purpose, a previously used experimental facility on cooling cycle [Coskun S, Pulat E, Unlu K, Yamankaradeniz R. Experimental performance investigation of a horizontal ground source compression refrigeration machine. International Journal of Energy Research 2008; 32: 44–56] was modified for the heating cycle. Soil thermal conductivity estimation was expanded and discussed. Preliminary numerical temperature distribution around GHE pipes was obtained. Tests were performed under laboratory conditions for space heating from December 2004 to March 2005. Variations of entering and leaving antifreeze solution temperatures, extracted heat from ground and rejected heat to the test room, super heat rate in evaporator and subcooling rate in condenser, total power consumption and coefficient of performance (COP) values for both the entire system and only heat pump unit (HPU) were obtained. Effect of outdoor temperature on system capacities and COP values with respect to outdoor air and mean soil temperatures were also presented. The COP of the entire system and HPU lie between 2.46–2.58 and 4.03–4.18, respectively. GSHP system was compared to conventional heating methods in the economical analysis and it was shown that the GSHP system is more cost effective than the all other conventional heating systems.  相似文献   

2.
An experimental study is performed to determine the performance of a ground source heat pump (GSHP) system in the heating mode in the city of Erzurum, Turkey. The GSHP system using R‐134a as refrigerant has a single U‐tube ground heat exchanger (GHE) made of polyethylene pipe with a 16 mm inside diameter. The GHE was placed in a vertical borehole with 55 m depth and 203.2 mm diameter. The average coefficients of performance (COP) of the GSHP system and heat pump in heating mode are calculated as 2.09 and 2.57, respectively. The heat extraction rate per meter of the borehole is determined as 33.60 W m?1. Considering the current gas and electric prices in Erzurum city, the equivalent COP of the GSHP system should be 2.92 for the same energy cost comparing with natural gas. The virgin ground in Erzurum basin has high permeability and low thermal conductivity. In order to improve the thermal efficiency of GHE and thus improve COP of a GSHP in the basin, the borehole should be backfilled with sand as low‐cost backfill material and a 1 to 2 m thick surface plug of clay should be inserted. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A heat pump system is the ideal way to extend the heat supply of existing oil or gas fired heating system. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossils fuels simultaneously reduces. In order to investigate the performance of the solar-ground source heat pump system in the province of Erzurum having cold climate, an experimental set-up was constructed. The experimental apparatus consisted of solar collectors, a ground heat exchanger (GHE), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May of 2008-2009. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP) and the system performance (COPS). The coefficient of performance of the heat pump and system were found to be in the range of 3.0-3.4 and 2.7-3.0, respectively. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey.  相似文献   

4.
Ground-source heat-pump systems provide a new and clean way of heating buildings in the world. They make use of renewable energy stored in the ground, providing one of the most energy-efficient ways of heating buildings. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossil fuels simultaneously reduces. The aim of this study is to evaluate the performance of vertical ground-source heat-pump system for climatic condition of Erzurum having cold climate in Turkey. For this purpose, an experimental set-up was constructed. The experimental apparatus consisted of a series GHE (ground heat exchanger), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May for the months of heating season of 2008–2009. The experimental results indicate that the average heat-pump COP and overall system’s COPS values are approximately 3.0 and 2.6 in the coldest months of heating season. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey.  相似文献   

5.
A new refrigeration cycle based on the combination of an ejector cycle with a vapour compression cycle is described. This integration maximizes the performance of the conventional ejector cycles and provides high COP for refrigeration. The analyses show that the new cycle has a significant increase in system performance over the conventional systems, its COP values are competitive to the absorption machines. If the system is powered by waste heat and the cost of its supply can be neglected, the COP values will be much higher. The system performance can be further improved if dual refrigerants are used and the dual refrigerants giving high performance are identified. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
在热泵制热工况下,超强吸水树脂与源土混合作为回填材料,分别对螺旋盘管、U型管以及整个系统进行了实验研究,得出系统性能变化曲线。实验结果表明,超强吸水树脂与源土混合作为回填材料,特别是螺旋盘管换热器,可明显增大地下换热器换热量,提高地源热泵系统的效率和稳定性,适用于干旱、土壤非饱和以及地下水位比较低的地区。  相似文献   

7.
In this paper, an experimental performance evaluation of a direct expansion ground‐coupled heat pump (DX‐GCHP) system in heating mode is presented. The DX‐GCHP uses R134a as the refrigerant, and consists of three single U‐tube copper ground heat exchangers (GHEs) placed in three 30 m vertical boreholes. During the on–off operations from December 25, 2007, to February 6, 2008, the heat pump supplied hot water to fan‐coil at around 50.4°C, and its heating capacity was about 6.43 kW. The energy‐based heating coefficient of performance (COP) values of the heat pump and the whole system were found to be on average 3.55 and 3.28 at an evaporating temperature of 3.14°C and a condensing temperature of 53.4°C, respectively. The second law efficiency on the DX‐GCHP unit basis was around 0.36. The exergetic COP values of the heat pump and the whole system were obtained to be 0.599 and 0.553 (the reference state temperature was set equal to the average outdoor temperature of ?1.66°C during the tests), respectively. The authors also discussed some practical points such as the heat extraction rate from the ground, refrigerant charge and two possible new configurations to simultaneously deal with maldistribution and instability of parallel GHE evaporators. This paper may reveal insights that will aid more efficient design and improvement for potential investigators, designers and operators of such DX‐GCHP systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is an experimental and theoretical study that aimed at conserving energy by utilizing the waste heat generated from a refrigeration system by calculating the range of condensation after the compression stage for the refrigerant (R410A). A helical coil tube‐shell heat exchanger was designed as a heat recovery unit to use the waste heat from an air conditioner 1TR (split type) in the outdoor unit between the compressor and the condenser to produce hot water and increase the coefficient of performance (COP) of the refrigeration cycle. Two experimental types of the helical coil heat exchanger (conventional and finned) were used in attempts to induce absorption of the rejected heat into tap water. The increase in the COP ranges from 12.5% to 40%, an increase in the water outlet temperatures difference reaches 12°C. A cost–benefit analysis in terms of the net present value and the payback period (PP) has been performed. From the analysis, it has been observed that the use of the designed heat recovery unit will save electrical consumption to produce the required hot water with a PP of about 11.7 months for the conventional heat exchanger and 17.5 months for the finned helical coil heat exchanger.  相似文献   

9.
Experimental investigation and theoretical study of a different type of two-stage vapor compression cascade refrigeration system using R-134 as the refrigerant are presented. Performance evaluations of two single stage vapor compression systems and two-stage vapor compression refrigeration cascade system are performed with respect to theoretical model developed. In the first section of the experiments, one refrigeration system, namely RU2, is operated. During the experiments, rate of the water flow connecting both systems is kept constant at various values and the voltage across evaporator heaters is increased from 100 to 200 V with intervals of 20 V. In the second part of the first category, experiments are repeated by using different mass flow rates of water. In the second section, two separate refrigeration systems, namely RU1 and RU2 are connected to each other by using the water loop. This system is also called cascade refrigeration system. It is observed that the change in water mass flow rate has little effect on the coefficient of performance for single stage and cascade stage refrigeration systems. It is also observed that the coefficient of performance is mainly a function of evaporator temperature and pressure. When RU2 operating in the single stage refrigeration system is compared with RU2 operating in the two-stage cascade refrigeration system at the same refrigeration load interval (360–460 W), the average percentage values of the decrease in the condensing pressure, the decrease in the compressor power and the increase in the COP are 21.9, 31.7 and 32.7, respectively.  相似文献   

10.
《Applied Thermal Engineering》2007,27(2-3):381-388
The present study describes a theoretical analysis of a transcritical CO2 ejector expansion refrigeration cycle (EERC) which uses an ejector as the main expansion device instead of an expansion valve. The system performance is strongly coupled to the ejector entrainment ratio which must produce the proper CO2 quality at the ejector exit. If the exit quality is not correct, either the liquid will enter the compressor or the evaporator will be filled with vapor. Thus, the ejector entrainment ratio significantly influences the refrigeration effect with an optimum ratio giving the ideal system performance. For the working conditions studied in this paper, the ejector expansion system maximum cooling COP is up to 18.6% better than the internal heat exchanger cycle (IHEC) cooling COP and 22.0% better than the conventional vapor compression refrigeration cycle (VCRC) cooling COP. At the conditions for the maximum cooling COP, the ejector expansion cycle refrigeration output is 8.2% better than the internal heat exchanger cycle refrigeration output and 11.5% better than the conventional cycle refrigeration output. An exergy analysis showed that the ejector expansion cycle greatly reduces the throttling losses. The analysis was also used to study the variations of the ejector expansion cycle cooling COP for various heat rejection pressures, refrigerant temperatures at the gas cooler exit, nozzle efficiencies and diffuser efficiencies.  相似文献   

11.
Huge amount of energies is consumed by the air conditioning (A/C) to maintain the required temperature and humidity inside spaces/applications of high humidly. An innovative A/C system that recovers the condenser heat in process air reheating and other useful thermal utilization is presented and investigated in this paper. For high coefficient of performance (COP) of the AC and more energy‐efficient system, the cold exhaust air rejected by the air condition system is also utilized to cool the condenser of the AC system. Huge amount of the water condensate from the system is also utilized as freshwater production. Performance of the proposed system is analytically investigated for different operating conditions and system capacities. Mathematical model of the systems is developed and solved numerically using Engineering Equation Solver (EES) software. Results show that the proposed system enhances the COP and decreases the electric power consumption. The saving in electric power consumption, COP, and the freshwater production rate of the system increases with decreasing room‐sensible heat factor, fresh air ratio, and outdoor air temperature and humidity. Moreover, the COP of the proposed system is 90% higher than COP of the basis system, and the savings in the running cost of the system increase by 4.5 times with decreasing the room‐sensible heat factor (RSHF) from 0.6 to 0.2. In addition, the highest COP attained by the proposed system is 2.72, and the corresponding freshwater production rate is 373.8 kg/h.  相似文献   

12.
The study deals with an advanced four-bed mass recovery adsorption refrigeration cycle driven by low temperature heat source. The proposed cycle consists of two basic adsorption refrigeration cycle. The heat source rejected by one cycle is used to power the second cycle. Due to the cascading use of heat and cooling source, all major components of the system maintain different pressure levels. The proposed cycle utilize those pressure levels to enhance the refrigeration mass circulation that leads the system to perform better performances. The performance of the proposed cycle evaluated by the mathematical model at equilibrium condition and compared with the performance of the basic two-bed adsorption refrigeration cycle. It is seen that the cooling effect as well as COP of the proposed cycle is superior to those of the basic cycle. The performances of the cycle are also compared with those of the two-stage cycle. Results also show that though the cooling effect of the proposed cycle is lower than that of two-stage cycle for heat source temperature less than 70 °C, the COP of the cycle, however, is superior to that of two-stage cycle for heat source temperature greater than 60 °C.  相似文献   

13.
Being environmental friendly and with the potential of energy-efficiency, ground-source heat pump (GSHP) systems are widely used. However, in southern China, there exists large difference between cooling load in summer and heating load in winter. Thus the increase of soil temperature gradually year-by-year will decrease the COP of the GSHP system. In this paper, the configuration of a vertical dual-function geothermal heat exchanger (GHE) used in an integrated soil cold storage and ground-source heat pump (ISCS&GSHP) system, which charged cold energy to the soil at night and produced chilled water at daytime in summer, and supplied hot water for heating in winter, is presented. This is then followed by reporting the development of the mathematical model for the GHE considering the impact of the coupled heat conduction and groundwater advection on the heat transfer between the GHE and its surrounding soil. The GHE model developed was then integrated with a water-source heat pump and a building energy simulation program together for a whole ISCS&GSHP system. Then the operation performance of the ISCS&GSHP system used for a demonstration building is studied. These simulation results indicated the system transferred 71.505% of the original power consumption at daytime to that at nighttime for the demonstration building. And the net energy exchange in the soil after one-year operation was only 2.28% of the total cold energy charged. Thus we can see the feasibility of the ISCS&GSHP system technically.  相似文献   

14.
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) have been used for performance analysis of single-stage vapour compression refrigeration system with internal heat exchanger using refrigerants R134a, R404a, R407c which do not damage to ozone layer. It is well known that the evaporator temperature, condenser temperature, subcooling temperature, superheating temperature and cooling capacity affect the coefficient of performance (COP) of single-stage vapour compression refrigeration system with internal heat exchanger. In this study, COP is estimated depending on the above temperatures and cooling capacity values. The results of ANN are compared with ANFIS in which the same data sets are used. ANN model is slightly better than ANFIS for R134a whereas ANFIS model is slightly better than ANN for R404a and R407c. In addition, new formulations obtained from ANN for three refrigerants are presented for the calculation of the COP. The R2 values obtained when unknown data were used to the networks were 1, 0.999998 and 0.999998 for the R134a, R404a and R407c respectively which is very satisfactory.  相似文献   

15.
When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.  相似文献   

16.
建立了同时采用双级压缩和利用喷射器代替节流阀的CO2跨临界双级压缩/喷射制冷循环模型,在系统稳定运行的条件下,分析了高压压力、气体冷却器出口温度、蒸发温度和高、低压压缩机吸气过热度对循环性能的影响,并与CO2跨临界单级压缩/喷射制冷循环和双级压缩制冷循环进行了比较.结果表明:在给定条件下,双级压缩/喷射循环的性能系数明显优于其他两种循环;随着气体冷却器出口温度的升高和蒸发温度的降低,循环的性能系数分别降低了54.9%和43.2%,并且其下降速度大于双级循环的性能系数下降速度;高、低压压缩机吸气过热度升高均导致双级压缩/喷射循环性能系数降低.  相似文献   

17.
垂直螺旋盘管地源热泵供暖制冷实验研究   总被引:5,自引:1,他引:5  
结合一实际用户建立垂直螺旋盘管地源热泵实验系统,在供暖制冷工况下测量地下盘管的进出水温度,盘管从地下的取热量、排热量,从而分析系统性能、供热、制冷系数。  相似文献   

18.
This paper compares the performance characteristics of refrigeration systems employing three types of condensers, namely the air‐cooled, the water‐cooled and the evaporative condensers. Experimental studies were conducted in the same vapour‐compression refrigeration unit operating with a different condenser in each test. It was found that the system with water‐cooled condenser had a higher refrigeration capacity by 2.9–14.4%, and a higher COP by 1.5–10.2% than the one with evaporative condenser. However, the refrigeration capacity and COP of the unit with evaporative condenser were higher than those of the one with air‐cooled condenser by 31.0 and 14.3%, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In order to decrease global pollution due to chlorofluorocarbons (CFCs), the usage of HFC‐ and HC‐based refrigerants and their mixtures are considered instead of CFCs (R12, R22, and R502). This was confirmed by an international consensus (i.e. Montreal Protocol signed in 1987). This paper offers to determine coefficient of performance (COP) and total irreversibility (TI) values of vapour‐compression refrigeration system with different refrigerants and their mixtures mentioned above using artificial neural networks (ANN). In order to train the network, COPs and TIs of refrigerants and their some binary, ternary and quartet mixtures of different ratios have been calculated in a vapour‐compression refrigeration system with liquid/suction line heat exchanger. In the calculations thermodynamic properties of refrigerants have been taken from REFPROP 6.01 which was prepared based on Helmholtz energy equation of state. To achieve this, a new software has been written in FORTRAN programming language using sub‐programs of REFPROP, and all related calculations have been performed using this software using constant temperature method as reference. Scaled conjugate gradient, Pola–Ribiere conjugate gradient, and Levenberg–Marquardt learning algorithms and logistic sigmoid transfer function were used in the network. Mixing ratios of refrigerants, and evaporator temperature were used as input layer; COP and TI values were used as output layer. It is shown that R2 values are about 0.9999, maximum errors for training and test data are smaller than 2 and 3%, respectively. It is concluded that, ANNs can be used for prediction of COP and TI as an accurate method in the systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
L.W. Wang  H.S. Bao  R.Z. Wang 《Renewable Energy》2009,34(11):2373-2379
In order to study the refrigeration performances of the resorption refrigeration technology, the resorption working pair of BaCl2–MnCl2–NH3, which has the similar working requirements for the heat source and cooling source, and also could satisfy the similar refrigeration requirements with the adsorption working pair of CaCl2–NH3, is studied by simulation and experiments. In the simulation the mass transfer resistance is not considered for the systems, and the refrigeration performances related with heat transfer performances are studied, results show that the resorption refrigeration system has a higher refrigeration power and COP (coefficient of the refrigeration performance) because the refrigeration effect is generated by the reaction heat compared to the latent heat of evaporation. After the simulation the experimental test unit is constructed, and the experimental data are analyzed. Results show that the resorption rate is influenced by the critical mass transfer performance very much, and the refrigeration performance is lower than that of adsorption system. The resorption system also has the problem of the larger refrigeration power loss for the reason of the sensible heat requirement of low temperature adsorber. How to improve the mass transfer performance of resorption system and decrease the influence on the refrigeration power by the sensible heat requirement of low temperature adsorber will be the key research directions for the application of resorption refrigeration systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号