首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrically conductive nanocomposites of HCl‐doped polyaniline (PANI–HCl) nanocolloid particles with water‐soluble and film‐forming polymers such as poly(vinyl alcohol) (PVA) and methylcellulose (MC) were prepared by the redispersion of preformed MC‐coated submicrometric PANI–HCl particles in PVA and MC solutions under sonication for 1 h and the casting of the films from the dispersions followed by drying. The submicrometric polyaniline (PANI) particles were prepared by the oxidative dispersion polymerization of aniline in an acidic (1.25M HCl) aqueous ethanol (30 : 70) medium with MC as a steric stabilizer. The particles contained 4.7 wt % MC and had a conductivity of 7.4 S/cm. They had an oblong shape of 203 nm (length) and 137 nm (breadth). Sonication broke the oblong‐shaped particles to sizes of ~10 nm in the PVA matrix and ~60 nm in the MC matrix. The electrical conductivity of these films was measured, and the percolation threshold was determined. The composites had the characteristics of a low percolation threshold at a volume fraction of PANI of 2.5 × 10?2 in the PVA matrix and at a volume fraction of 3.7 × 10?2 in the MC matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Composites of polyaniline in its emeraldine base form (PANI‐EB) and photo‐acid generators (PAG) show an increase in conductivity upon photo‐irradiation due to the protonation of PANI‐EB. Such materials may be utilized to fabricate conducting patterns by photo‐irradiation. However, the conductivity obtained by direct irradiation of PANI‐EB/PAG composites was normally quite low (<10?3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), which is a proton transfer polymer, was added to PANI‐EB/PAG. Results showed that addition of low Mw (550) PEG significantly enhance the photo‐induced conductivity. Conductivities as high as 10?1–100 S/cm were observed after photo‐irradiation. This conductivity is comparable to that of PANI‐salt synthesized by oxidizing aniline in the presence of an acid. High Mw (8000) PEG is much less effective than PEG 550, which is attributed to its lower compatibility with PANI. PEG‐grafted PANI (N‐PEG‐PANI) was also studied as an additive. Composites of PANI‐EB and N‐PEG‐PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo‐induced conductivity of the N‐PEG‐PANI/PANI‐EB/PAG composite reached 10?2–10?1 S/cm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
A conductive poly(aniline codoped with dodecyl benzene sulfonic acid and hydrochloric acid) [PANI‐D/H, yield: 32.2%, intrinsic viscosity ([η]): 1.39 dL/g, electrical conductivity: 7.3 S/cm] was synthesized by chemical oxidative polymerization from aniline‐dodecylbenzene sulfonic acid salt (A‐DS)/aniline‐hydrochloric acid salt (A‐HS) (6/4M ratio) in an aqueous system. Waterborne polyurethane (WBPU) dispersion obtained from isophorone diisocyanate/poly(tetramethylene oxide)glycol/dimethylol propionic acid/ethylene diamine/triethylene amine/water was used as a matrix polymer. The blend films of WBPU/PANI‐D/H with various weight ratios (99.9/0.1–25/75) were prepared by solution blending/casting. Effect of PANI‐D/H content on the mechanical property, dynamic mechanical property, hardness, electrical conductivity, and antistaticity of WBPU/PANI‐D/H blend films was investigated. The dynamic storage modulus and initial tensile modulus increased with increasing PANI‐D/H content up to 1 wt %, and then it was significantly decreased about the content. With increasing PANI‐D/H content, the glass transition temperature of soft segment (Tgs) and hard segment (Tgh) of WBPU/PANI‐D/H blend films were shifted a bit to lower the temperature. The tensile strength and hardness of WBPU/PANI‐D/H blend films increased a little with increasing PANI‐D/H content up to 0.5 wt %, and then it was dramatically decreased over the content. The elongation at break of WBPU/PANI‐D/H decreased with an increase in PANI‐D/H content. From these results, it was concluded that 0.5–1 wt % of PANI‐D/H was the critical concentration to reinforce those various properties of WBPU/PANI‐D/H blend films prepared in this study. The electrical conductivity of WBPU/ultrasonic treated PANI‐D/H (particle size: 0.7 μm) blend films prepared here increased from 4.0 × 10?7 to 0.33 S/cm with increasing PANI‐D/H content from 0.1 to 75 wt %. The antistatic half‐life time (τ1/2) of pure WBPU film was about 110 s. However, those of WBPU/ultrasonic treated PANI‐D/H blend films (τ1/2: 8.2–0.1 s, and almost 0 s) were found to decrease exponentially with increasing PANI‐D/H content (0.1–9 wt %, and above 9 wt %). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 700–710, 2004  相似文献   

4.
Waterborne polyurethane‐ureas (pristine WBPUs: WBPU‐19 and WBPU‐24, fixed soft segment content: 60 wt %) containing dimethylol propionic acid (DMPA)/ethylene diamine (EDA) contents (19/16.8 and 24/11.4 mol %) were prepared. The polyaniline (PANI)‐graft‐WBPU (PANI‐graft‐WBPU) films were prepared by oxidative graft polymerization of aniline on the surface layer of WBPU films. This study focused on the effects of reaction conditions (concentrations/treating times/temperatures of aniline and APS) and DMPA content on the %grafting, conductivity, and mechanical properties of PANI‐graft‐WBPU films. To obtain the maximum %grafting (PANI‐graft‐WBPU‐19: 6.2, and PANI‐graft‐WBPU‐24: 7.4) and conductivity (PANI‐graft‐WBPU‐19: 3.6 × 10?2S/cm, and PANI‐graft‐WBPU‐24: 4.7 × 10?2S/cm), the optimum concentrations/treating times/temperatures of aniline and APS, were found to be 0.35M/10 min/25°C and 0.2M/10 min/0°C, respectively. The tensile strength of film samples was found to be increased in the order of PANI‐graft‐WBPU‐19>pristine WBPU‐19>PANI‐graft‐WBPU‐24>pristine WBPU‐24. The PANI‐graft‐WBPU‐19 (%grafting: 6.2) films on exposure to 0–10,000 ppm phenol solutions showed a well‐defined response behavior, demonstrating high promise for application in aqueous phenol sensors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Electrically conductive polyaniline (PANI) and its blend with polycarbonate (PC) was prepared by one-step emulsion polymerization technique in which sodium lauryl sulfate (SLS) acts as surfactant and as a protonating agent for the resulting polymer. The prepared PANI and its blends were characterized by density, percentage of water absorption, and electrical conductivity. PANI–PC blend exhibits a conductivity value of 4.70 × 10−2 S/cm (PANI–PC1) and 5.68 × 10−5 S/cm (PANI–PC3) with a change in dopant from p-toluene sulfonic acid (TSA) to SLS, respectively. By using a more general method, which takes into account the presence of disorder of the second kind in polymers proposed by Hosemann, crystal size (〈N〉) and lattice strain (g in %) values were estimated. The variation of conductivity in doped PANI and PANI–PC blend has been explained on the basis of these microcrystalline parameters. TGA thermograms of PANI and PANI-PC blend show three-step degradation behavior. Thermal stability of PANI was improved after blending with PC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 383–388, 2001  相似文献   

6.
Electrically conducting composite films of polyaniline:polyacyrlonitrile (PANI:PAN) prepared with varying composition ratios of aniline mixed with a fixed amount PAN. The films of optimum thicknesses (0.10 mm) were obtained using an electrically operated automatic pressure machine. The films polymerized by oxidative polymerization using 0.1M potassium persulphate (K2S2O8), undoped in 1M aqueous ammonia (NH4OH) and doped in 1M hydrochloric acid (HCl). The conductivity of composite films was studied by keeping it in 1M HCl for different time period using 4-in-line probe DC electrical conductivity measuring instrument and the temperature dependence of DC electrical conductivity was studied using isothermal technique. The PANI:PAN composite film is used as a working electrode in an electrochemical cell. Chemically doped composite film is used as cathode (working electrode), aluminum metal foil as anode (counter electrode) and platinum foil as reference electrode. The electrolyte is of 0.05M aluminum chloride (AlCl3) in dimethyl sulfoxide (DMSO). The voltage of the working electrode is stabilized with respect to the reference electrode and current applied between the working and counter electrode through a 9-V battery. The change in voltage versus time is plotted as the discharge curve and reversing the cell processes results in the doping of the composite films. The diffusion coefficient of the dopant ion (Cl) present in the fully doped films were estimated by the galvanostatic pulse technique and found to bedifferent in different samples in the range of 10−16 to 10−12 cm2 s−1. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A novel route has been developed to synthesize polyaniline (PANI)/nickel oxide (NiO) nanocomposites via liquid/liquid interfacial polymerization where NiO and the initiator were dispersed in the aqueous phase and the monomer was dissolved in the organic phase. The synthesized samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, ultraviolet?visible absorption, X‐ray diffraction, and electrochemical, electrical conductivity and magnetic property measurements. NiO was dispersed uniformly within the PANI matrix. The composites exhibited noticeable improvement in thermal stability and electrical conductivity in comparison with pure PANI. The composites showed excellent electrochemical reversibility at a scan rate of 0.1 V s?1 and good redox stability even up to 100 cycles. The room temperature magnetic hysteresis measurements show a low value of coercivity for the polymer composites in comparison with NiO. The remnant magnetization (Mr) values were found to be increased with increasing concentration of NiO in the composites. © 2013 Society of Chemical Industry  相似文献   

8.
N‐vinylcarbazole (NVC) was polymerized by 13X zeolite alone in melt (65°C) or in toluene (110°C) and a poly(N‐vinylcarbazole) (PNVC)‐13X composite was isolated. Composites of polypyrrole (PPY) and polyaniline(PANI) with 13X zeolite were prepared via polymerization of the respective monomers in the presence of dispersion of 13X zeolite in water (CuCl2 oxidant) and in CHCl3 (FeCl3 oxidant) at an ambient temperature. The composites were characterized by Fourier transform infrared analyses. Scanning electron microscopic analyses of various composites indicated the formation of lumpy aggregates of irregular sizes distinct from the morphology of unmodified 13X zeolite. X‐ray diffraction analysis revealed some typical differences between the various composites, depending upon the nature of the polymer incorporated. Thermogravimetric analyses revealed the stability order as: 13X‐zeolite > polymer‐13X‐zeolite > polymer. PNVC‐13X composite was essentially a nonconductor, while PPY‐13X and PANI‐13X composites showed direct current conductivity in the order of 10?4 S/cm in either system. However, the conductivity of PNVC‐ 13X composite could be improved to 10?5 and 10?6 S/cm by loading PPY and PANI, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 913–921, 2006  相似文献   

9.
Polyaniline (PANI) molecular composites were synthesized by chemical oxidative polymerization of the aniline and aniline dimer, N‐phenyl‐1,4‐phenylendiamine, in the presence of a macrocycle, calix[8]arene p‐octasulfonic acid (C8S), using ammonium peroxidisulfate as oxidant. The macrocycle has acted both as acid dopant and surfactant to obtain processable PANI‐ES. The PANI/calix[8]arene p‐octasulfonic acid composite was also obtained by a simple doping of PANI emeraldine base form with calix[8]arene sulfonic acid. The structure of materials was confirmed by Fourier transform infrared, UV–vis and nuclear magnetic resonance spectroscopy. All synthesized composite materials are amorphous and soluble in chloroform, dimethylsulfoxide, NMP, showing excellent solution‐processing properties combined with electrical conductivity. Cyclic voltammetry evidenced a good electroactivity for the composite films. Dielectric properties (dielectric constant and dielectric losses) were determined and are comparable with those of other PANI/ionic acid polymer composites. Preliminary studies have evidenced a high dielectric constant (104 at 100 Hz) and electrical conductivity of 6 × 10?3 S/cm for PANI composites. From sulfur elemental analysis of the PANI/calixarene, it results that the content in macrocycle is ~30% (weight). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
A novel amperometric glucose biosensor based on self‐assembling glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on nanofibrous polyaniline (PANI) was described. PANI nanofibers were synthesized via an interfacial polymerization method. A sulfonated polyelectrolytes‐poly(sodium 4‐styrenesulfonate) (PSS) was used to form the negative PANI/sulfonated polyelectrolyte complex, which had good disperse in aqueous solution. GOx was immobilized on the PANI/PSS surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. The unique sandwich‐like layer structure (Pt‐DENs/GOx/Pt‐DENs/PANI/PSS) formed by self‐assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The fabricated Pt‐DENs/GOx/Pt‐DENs/PANI/PSS electrode exhibited excellent response performance to glucose with a detection limit of 0.5 μM, wide linear range from 10 μM to 4.5 mM, short response time within 5 s, improved sensitivity of 39.63 μA/(mM cm2), and good stability (85% remains after 20 days). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Polyaniline (PANI)/Ce3+ and PANI/Ce4+ composites were successfully prepared by in situ polymerization in an aqueous solution of poly(2‐acrylamido‐2‐methylpropane sulfonic acid) and characterized by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X‐ray photoelectron spectroscopy, SEM, TEM and electrochemical methods. The results showed that the PANI/Ce ion composites had a high degree of sphericity, high electrical conductivity and good electrochemical performance. The conductivity of PANI/Ce(NO3)3 reaches a maximum of 46.76 S cm?1 at 20 wt% of Ce(NO3)3. It is increased by 377% by comparison with that of pure PANI. In particular, the polarization results showed that the corrosion current density (0.47 µA cm?2) and the inhibition efficiency (97%) of PANI/Ce(NO3)3 were better than the results for PANI and PANI/Ce(SO4)2 composite. This suggested that the PANI/Ce(NO3)3 composite has promising applications in conductive materials, anticorrosion coatings and other related fields. © 2017 Society of Chemical Industry  相似文献   

12.
The electrochemical polymerization of aqueous solution of aniline and HCl was carried out in a single compartment electrochemical cell. After 2 h of the polymerization reaction, polarity of the electrodes was reversed and kept for 1 h. By this process the conductivity of the polyaniline (PAni) formed was found to increase dramatically from 1.1 × 10?4 to 3.0 × 10?1 S/cm. The PAni samples obtained both by reversing the polarity (“PANI‐R”) and without reversing the polarity (“PANI”) were characterized by the infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), ultraviolet spectroscopy (UV), Hall effect experiment, X‐ray analysis (XRD) and scanning electron microscope (SEM). The results show that the increase in the conductivity of PAni through the reversion of polarity is due to the partial reduction of over oxidized sample giving more emeraldine base and hence more polaron formation with increased charge carrier density and its mobility. The degree of crystallinity and the crystallite size is decreased marginally and the d‐spacing is increased marginally due to this reduction. The PAni behaves like a p‐type semiconductor that means the majority current carriers are holes. A plausible reduction mechanism due to reversal of polarity during electrochemical polymerization is also proposed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
Conducting polyaniline (PANI)/titanium dioxide (TiO2) composite nanofibres with an average diameter of 80–100 nm were prepared by one‐step in situ polymerization method in the presence of anatase nano‐TiO2 particles, and were characterized via Fourier‐transform infrared spectra, UV/vis spectra, wide‐angle X‐ray diffraction, thermogravimetric analysis, and transmission electron microscopy, as well as conductivity and cyclic voltammetry. The formation mechanism of PANI/TiO2 composite nanofibres was also discussed. This composite contained ~ 65% conducting PANI by mass, with a conductivity of 1.42 S cm?1 at 25°C, and the conductivity of control PANI was 2.4 S cm?1 at 25°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Montmorillonite, organically modified by octadecylammine salt, has been adopted to successfully fabricate the exfoliated organic montmorillonite/poly(3,4‐ethyldioxythiophene) (OMMT/PEDOT) nanocomposites by in situ polymerization in aqueous media. Hydrochloric acid, 1,5‐naphthalenedisulfonic acid, and sodium benzenesulphonate have been employed to activate the polymerization of 3,4‐ethyldioxythiophene by offering active sites on the layers of montmorillonite. The resulting exfoliated nanocomposites have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, and electrical conductivity measurement and showed controllable conductivity in the range of 10?7 to 10?2 S/cm and improved thermal stability compared with pure PEDOT. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
We developed a simple method for the deposition of a uniform layer of polyaniline (PANI) on the surface of acrylonitrile–butadiene–styrene (ABS). The method consisted of two steps: the soaking of ABS samples in a water‐based aniline solution stabilized by surfactants followed by the oxidative polymerization of the adsorbed and absorbed monomer. The three types of surfactants (molecular N,N‐dimethyl‐octalamine‐N‐oxide, anionic sodium dodecyl sulfate, and cationic hexadecyl trimethyl ammonium bromide) were used to prepare and stabilize the aniline emulsions in water. After treatment, the ABS surface was completely covered by PANI (as seen with scanning electron microscopy). The surface conductivity after PANI coating reached values between 10?3 and 10?4 S/□ in the best developed conditions. The chemical nature of the surfactant affected the particular setting of the aniline/surfactant emulsion preparation (time of ultrasonification = 15–30 min), its optimal concentration (2–10 wt % aniline and 0.1–0.2M surfactant), and other parameters of treatment, such as time (10 s to 20 min) and temperature (20–60°C) of soaking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1752–1758, 2004  相似文献   

16.
Polyaniline (PANI)–organoclay/Epoxy (EP) nanocomposites were prepared. PANI–organoclay nanocomposites were used as curing agent for EP. Organoclay was prepared by an ion exchange process between sodium cations in MMT and NH3+ groups in polyoxypropylene (D230). PANI–organoclay nanocomposite was synthesized by in situ polymerization of aniline in (14 wt%) organoclay. Infrared spectra and differential scanning calorimetry confirm the curing of EP. The absence of d001 diffraction band of organoclay in the nanocomposites was observed by X‐ray diffraction. The structure argument was further supported by scanning electron microscopy and transmission electron microscopy. Electrical conductivity of the nanocomposites within the range 2.1 × 10−7–3.2 × 10−7 S/cm depending on the concentration of the PANI/D230‐MMT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
Polyaniline (PANI) was prepared by the oxidation of aniline in the presence of various inorganic and organic acids at 20 °C and ?50 °C. When strong acids were used, the conductivity of the protonated PANI was typically 1–10 S cm?1. The results indicate that the protonation of PANI in media containing carboxylic acids was achieved with the help of sulfuric acid produced during the reaction with ammonium peroxydisulfate. The conductivity of PANI prepared under such conditions was reduced. Partial benzene‐ring sulfonation has been proposed to explain the wide range in conductivity of PANI bases, 10?11–10?7 S cm?1. The densities of the samples reflect the nature of the acid used. The densities of the corresponding PANI bases exhibit much less variation. Molecular weight and degree of crystallinity of PANI are higher when the polymerization is carried out at ?50 °C. The conductivity of the PANI is determined mainly by way of protonation. The effects of molecular weight and of crystallinity on PANI conductivity are marginal. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
Polyaniline (PANI) biocomposites were prepared via in situ polymerization of aniline monomer with cellulose triacetate (CTA) and by using ammonium persulfate as an initiator in an aqueous solvent. The composites exhibited high solubility in organic solvents due to the incorporated CTA component, and enabled the fabrication of honeycomb‐patterned thin films by casting the PANI composite solutions under humid conditions. The honeycomb‐patterned PANI–CTA composite films showed a high conductivity corresponding to about 1.5 S/cm, good mechanical stability, and high flexibility. The composites have a potential advantage comparing to pure PANI because of biodegradability and high solubility due to included CTA. These composite films can usefully be applied in the field of bio‐nanotechnology and medicine including micro‐structured electrode surfaces, filters for cell sorting, and bio‐interfaces and so on. POLYM. COMPOS., 37:2649–2656, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
Electrically conductive PP/EPDM dynamically crosslinked thermoplastic vulcanizate (TPV)/expanded graphite (EG) has been successfully prepared via melt compounding of maleic anhydride grafted polypropylene (PP‐g‐MA)/EG masterbatch and a commercially available TPV material. Correlation between graphite microstructure, and electrical conductivity as well as melt rheological behavior has been studied. Natural graphite flake (NGF), graphite intercalated compound (GIC), and exfoliated graphite (EG) have been employed and compared. Scanning electron microscopy (SEM) showed the presence of 100–200 nm nanolayers in the structure of PP‐g/EG masterbatches, whereas thinner platelets (1.5–2.5 nm) were revealed by transmission electron microscopy (TEM). Better dispersion of the graphite nanolayers in the microstructure of TPV/PP‐g‐MA/EG composite was verified, as the 7.3 Å spacing between the aggregated graphite nanolayers could not be observed in the XRD pattern of this material. TPV/PP‐g/EG nanocomposites exhibited much lower conductivity percolation threshold (φc) with increased conductivity to 10?5 S/cm at EG wt % of 10. Higher nonlinear and nonterminal melt rheological characteristics of dynamic elastic modulus (G′) at low frequency region was presented by the TPV/PP‐g/EG nanocomposites, indicating the formation of nanoscopic conducting multiple networks throughout the continuous TPV matrix. Maleated PP was found to be much more effective in separating EG nanolayers which is attributed to the higher interfacial interaction between PP‐g‐MAH and EG, synergized with its multiporous structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
In this study, a method is developed to fabricate sulfonated poly (ether ether ketone)/phosphotungstic acid‐polyaniline (SPEEK/HPW‐PANI) membranes by in situ polymerization of aniline for the purpose of decreasing the weight loss of HPW in the membranes. The synthesis involves the production of a SPEEK/HPW hybrid membrane followed by different layer of PANI coatings on the membrane surface, and subsequent treatment using drying in vacuum procedures. The scanning electronic microscopy images showed that HPW had good compatibility with SPEEK polymers and energy dispersive X‐ray spectroscopy revealed the successfully doping with HPW and polymerization of PANI. The surface of SPEEK/HPW‐PANI becomes more compact than that of SPEEK/HPW and pure SPEEK, which may lead to reduce the water uptake and swelling property. The proton conductivity was found for the SPEEK/HPW‐PANI‐5 composite membrane (91.53 mS/cm at 80°C) higher than that of pure SPEEK membrane (68.72 mS/cm at 80°C). Better thermal stability was determined in both SPEEK/HPW and SPEEK/HPW‐PANI membranes than pristine SPEEK membrane. Therefore, PANI is a good potential coating for organic–inorganic hybrid e.g. SPEEK/HPW membrane materials to improve their hydrothermal stable properties and SPEEK/HPW PANI is a material that shows promise as a proton exchange membranes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41033.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号