首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes a novel approach of maximum power control for small wind turbines by using predicted wind speed data. Because of the moment of inertia of the wind turbine, when using conventional control method, the time lag of control will occur due to turbulence in the environment. Our proposed control system uses future information, which is the predicted wind speed, for wind turbine control. The control algorithm creates a reference trajectory of the rotational speed of the wind turbine. The advantage of using the predicted data is that the controller can operate the wind turbine efficiently so that the rotational speed of the wind turbine catches up with the reference speed at the maximum power point. Simulation results show improvement of generation efficiency compared to the conventional control method. Then we discuss the influence of the prediction error of wind speed on control performance. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
This paper proposes a wind turbine emulator (WTE) based on the blade momentum theory, and tests the variable‐speed wind power generation system using a pulse‐width modulation (PWM) converter to verify the accuracy of the emulator. The behavior of the wind turbine for natural wind is reproduced by the WTE based on the proposed theory. The variable‐speed wind power generation system employs a vector control system to control the torque and speed of the permanent magnet synchronous generator in the converter side. The windmill rotational speed is controlled to maximize the efficiency of the wind turbine against wind velocity. And the active power and reactive power are controlled in the inverter side, and the generated power is sent to the grid while controlling the DC link voltage to be constant at the same time. The behaviors of the WTE are compared with the simulation results and experimental results using a real wind turbine. These experimental and simulation results show that the test bench with the proposed WTE has sufficient performance and accuracy to verify variable‐speed wind generator systems. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

3.
High penetration of renewable energy in a power system may cause the problem of power dispatching and stability. The detailed dynamic behavior analysis for such a system is therefore important to the planning and operation of the power system. This study discussed the dynamic characteristics of an island power system with variable‐pitch wind turbines under high wind speed and high small hydraulic output power. The system primarily consisted of three diesel engine power generation systems, three constant‐speed variable‐pitch wind turbines, a small hydraulic induction generation system, and lumped static loads. The maximum penetration of renewable energy in this system could reach almost 60%. Detailed models based on MATLAB/Simulink were developed to cater for the dynamic behavior of the system. The results suggested that this island power system can operate stably in this operational mode with the help of variable‐pitch wind turbines. This study can serve as an important reference for planning, operation, and further expansion of island power systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes a variable‐speed wind generation system using the boost converter. The proposed system has three speed control modes for the wind velocity. The control mode of low wind velocity regulates the armature current of the generator with the boost converter to control the speed of wind turbine. The control mode of middle wind velocity regulates the DC link voltage with the vector controlled inverter to control the speed of wind turbine. The control mode of high wind velocity regulates the pitch angle of the wind turbine with the pitch angle control system to control the speed of the wind turbine. The hybrid combination of three control modes extends the variable‐speed range. The proposed system simplifies maintenance, improves reliability, and reduces the costs compared with the variable‐speed wind generation system using a PWM converter. This paper describes the control strategy and modeling for a simulation of the proposed system using Simulink of Matlab. It also describes the control strategy and modeling of a variable‐speed wind generation system using a PWM converter. The steady state and transient responses for wind velocity changes are simulated using Matlab Simulink. This paper verifies the fundamental performance of the system using a boost converter by discussing the simulation results of both systems. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 169(4): 37–54, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20902  相似文献   

5.
There are some factors that render a power system network unbalanced: UHV transmission lines in which three‐phase transmission lines are not transposed, an unbalanced transformer, unbalanced load as well as sustained unbalanced faults. On the other hand, the number of variable‐speed generators used in pumping‐up power stations has recently been increasing in Japan. This paper presents a new means of calculating unbalanced power flow of a power system which contains variable‐speed pumping‐up generators. This new technique is based on the phase coordinate method, because a power system which has elements of unsymmetrical impedance can easily be analyzed by using it. In this paper, phase coordinate models of the variable‐speed generator and its secondary exciting circuit, composed of a GTO converter/inverter, are analyzed first. Procedures of power flow calculation of unbalanced power systems follow. © 2000 Scripta Technica, Electr Eng Jpn, 134(3): 34–43, 2001  相似文献   

6.
This paper proposes sensorless output power maximization control of a wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information on wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(2): 11–19, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20043  相似文献   

7.
Variable‐speed and constant‐frequency power generating systems using rotor excitation of the wound‐rotor induction machines have been used for such applications as variable‐speed pump generators and flywheel energy storage systems. However, the stand‐alone generating system of this type has only been reported and has not yet been practically used. On the other hand, the stand‐alone generating systems using diesel engines have been widely used for emergency supplies of plants or isolated islands and so on. However, in these cases, synchronous generators are usually used. If the output frequency is to be kept constant, there is the need to control the speed of the engine using a high‐performance governor. Even then, the output frequency changes in the case of a sudden load change. This paper proposes a new stand‐alone power generating system. In this system, the constant‐frequency output voltage can be obtained even though rotor speed changes by several percent. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(2): 75–85, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10191  相似文献   

8.
This paper describes a maximum power point tracking (MPPT) control method for propeller‐type compact wind power generators with passive self‐pitch‐controlled blades, which quickly makes the output current and voltage converge on the maximum power point based on wind speeds detected from an anemometer. The voltage and current output from these wind power generators vary with wind speeds at locations such as the roofs of buildings. Transient characteristics of the voltage output from compact wind power generators have two modes because of the self‐pitch‐controlled blades: mode I in which the output voltage hardly increases and mode II in which it rapidly increases. Thus, in order to acquire the generated power effectively, irrespective of how the wind speeds may change, a method to perform the MPPT control while searching for mode II is needed. Thus, by judging the mode from the change of the sign of the time differential of the voltage deviation between sampling times, the MPPT control method proposed here makes the output current converge on the maximum point using relationships between the maximum power and optimal current which give the maximum power and the wind speed. Effectiveness of the proposed MPPT control method is verified through simulations and experiments using a wind tunnel. IEEJ Trans 2010 DOI: 10.1002/tee.20609  相似文献   

9.
针对通风管道系统,安装单台永磁同步风力发电机不能二次利用风能、风能利用率低,安装多台成本较高的缺点,提出一种具有前后两个半径不同的风机,且风机旋转方向相反的双转子永磁同步风力发电机.在分析双转子永磁同步风力发电机和传统最大功率跟踪控制的工作原理的基础上,得出前后风机风轮半径的关系、前风机作用下发电机输出功率和前风机的最...  相似文献   

10.
风力发电系统中,风力发电机的控制方法是个关键环节.对双馈变速恒频异步风力发电机现有的控制方法进行了研究,提出一种新颖的控制扰动方法,即将四风速模型中的合成风速在轴系模型中产生的转矩引入功率控制扰动中.  相似文献   

11.
针对目前已有的最大功率跟踪(MPPT)控制方法的不足,为提高风力发电的最大风能利用效率,根据风力发电机和boost变换器的输出特性,在变风速条件下,通过给定最佳机械转矩,直接计算最优占空比,控制风机电磁转矩,实现最大功率追踪控制.针对GP-300和FD-5型直驱式永磁风力发电机,进行功率跟踪控制仿真实验,实验结果表明所提出方法的有效性和可靠性,并具有良好的工程应用前景.  相似文献   

12.
为实现直驱式永磁同步风电机组在全风速范围内的高效、稳定运行,提出了一种基于最优转速给定的最大功率点跟踪控制策略与一种变桨距控制策略。当风速波动时,发电机转子转速的参考值将根据风电机组运行状态的不同选择不同的计算方式,使得风力机功率系数最大或稳定在额定转速不超速。而桨距角的大小将根据发电机的输出功率变化,当输出功率小于额定值时保持为0,大于额定值时增大使得输出功率稳定在额定值附近。最大功率点跟踪控制系统及桨距角控制系统都以发电机的输出功率大小作为控制方式的切换条件,无需复杂的切换规则。在Matlab/Simulink仿真平台上全风速范围内的风电机组的运行结果验证了所提出的控制策略的正确性与有效性。  相似文献   

13.
PMSG风力发电系统转速估计算法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种无传感器直驱式永磁同步风力发电机控制系统的转子速度估算法。该算法可由简单的定子磁通方程推导,且只需检测定子电压和电流。定子磁通估算通过基于定子电压模型的可编程低通滤波器而设计,建立了基于递归最小二乘法的电机转速辨识模型,并将实时辨识的电机转速用于转子位置观测和转子磁场定向矢量控制。仿真结果表明,实现了最大功率跟踪控制,验证了控制算法的有效性和可行性。  相似文献   

14.
基于风速预测的最大风能追踪控制系统仿真   总被引:1,自引:1,他引:1  
为了使交流励磁变速恒频风力发电系统在无需设置风速计的情况下,双馈电机实现最大风能跟踪的目的,提出了一种新的基于神经网络的无风速检测方案。通过利用高斯径向基神经网络预测为最大风能追踪提供了一个准确的风速数据,从而准确获取最大功率点下对应的电机转子转速,以减少系统的损耗和成本,提高系统的可靠性。本文针对3.6MW风力发电系统的数学模型,建立了基于定子磁链定向矢量控制的系统仿真模型。结合风速预估和有功功率、无功功率的解耦控制实现了最大风能跟踪。  相似文献   

15.
为了增强风电场主动融入大电网的能力,基于风速和功率的超短期提前一步预测,以最大风能捕获和输出功率平滑为优化目标,以发电机转速和桨矩角为控制变量,为了有效地减少桨矩角系统和机械系统的压力,制定了最小化控制标准,建立了相应的多目标优化模型。运用遗传算法求解出模型的优化解,将该优化解作用于风力发电机组来优化系统的性能。通过对1.5 MW的变速恒频风力发电系统进行仿真研究表明,与传统的最大功率追踪控制相比较,所提出的控制策略提高了发电机输出功率,同时抑制了输出功率的低频波动。  相似文献   

16.
在风力发电机控制中采用叶尖速比法,可以实现快速功率跟踪,但常由于风速测量值与实际风速值不一致,导致无法达到最大功率点。由于爬山搜索法不需要测量风速,所以采用爬山搜索法和叶尖速比控制法相结合来实现快速最大功率跟踪。当风速变化超过±1 m/s时,采用叶尖速比控制法,按测量风速计算出参考转速,迅速跟随,达到指定转速后,切换到爬山搜索法,实现精确的最大功率跟踪。在Matlab环境下,建立了永磁直驱式风力发电机模型,仿真分析了风速变化时,采用叶尖速比法和爬山搜索法相结合的方法能够实现最大功率快速而精确的跟踪,且具有很好的动态特性和稳态特性。  相似文献   

17.
在风力发电机控制中采用叶尖速比法,可以实现快速功率跟踪,但常由于风速测量值与实际风速值不一致,导致无法达到最大功率点。由于爬山搜索法不需要测量风速,所以采用爬山搜索法和叶尖速比控制法相结合来实现快速最大功率跟踪。当风速变化超过±1 m/s时,采用叶尖速比控制法,按测量风速计算出参考转速,迅速跟随,达到指定转速后,切换到爬山搜索法,实现精确的最大功率跟踪。在Matlab环境下,建立了永磁直驱式风力发电机模型,仿真分析了风速变化时,采用叶尖速比法和爬山搜索法相结合的方法能够实现最大功率快速而精确的跟踪,且具有很好的动态特性和稳态特性。  相似文献   

18.
This paper presents a new implementation of a proportional‐integral‐derivative (PID)‐type fuzzy controller (PIDfc) for a battery grid‐supporting inverter to regulate the frequency and voltage of an autonomous distributed variable‐speed wind turbine (VSWT). The VSWT which drives a permanent magnet synchronous generator (PMSG) is assumed for demonstration. The PIDfc is built from a set of control rules that adopts the droop control method and uses only locally measurable frequency and voltage signals. The output control signals are determined from the knowledge base and the fuzzy inference. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB/SimPowerSystems. Next, to verify the scheme's effectiveness, the simulation results are compared with the results of a conventional controller through some performance indices. The results demonstrate the effectiveness of the PIDfc scheme to control a grid‐supporting inverter of battery in the reduction of frequency and voltage fluctuations. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

19.
Effects of the fluctuation inherent in wind speed are studied by a probabilistic method. The random variation in wind speed is responsible for random behavior in output power and internal voltage of a wind power generator. In case of fault occurrence at the instant of high internal voltage, the resultant short‐circuit current will be big, and vice versa. The DC component is also affected. According to the study, 2.4% and 1.3% increase of short‐circuit current in AC and DC components are observed respectively in a large variation case. This implies that the wind speed variation should be considered for accurate short‐circuit study. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(3): 27–36, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20721  相似文献   

20.
大型风电场的集中功率控制策略研究   总被引:1,自引:0,他引:1  
在分析变速恒频风力发电机组与大型风力发电场控制系统关系的基础上,提出风力发电场的集中功率控制策略。利用M atlab/S imu link环境,建立风电场功率控制系统的仿真模型。以风扰动为例,对风力发电场并网的有功和无功功率调节过程进行仿真研究。理论研究和仿真分析结果验证了风电场集中功率控制策略的可行性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号