首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A platinum/alumina catalyst was sintered in oxygen and hydrogen atmospheres using two metal loadings of the catalyst: 0.3% Pt and 0.6% Pt. After sintering, the aromatization selectivity was investigated with the reforming of n‐heptane as the model reaction at a temperature of 500 °C and a pressure of 391.8 kPa. The primary products of n‐heptane reforming on the fresh platinum catalysts were methane and toluene, with subsequent conversion of benzene from toluene demethylation. To induce sintering, the catalysts were treated with oxygen at a flow rate of 60 mL min?1, pressure of 195.9 kPa and temperatures between 500 and 800 °C. The 0.3% Pt/Al2O3 catalyst exhibited enhanced aromatization selectivity at various sintering temperatures while the 0.6% Pt/Al2O3 catalyst was inherently hydrogenolytic. The fact that aromatization was absent on the 0.6% Pt/Al2O3 catalyst was attributed to the presence of surface structures with dimensionality between two and three as opposed to essentially 2‐D structures on the 0.3% Pt/Al2O3 catalyst surface. On the 0.3% Pt/Al2O3 catalyst, the reaction product ranged from only toluene at a 500 °C sintering temperature to predominantly cracked product at a sintering temperature of 650 °C and no reaction at 800 °C. For sintering at about 650 °C, subsequent conversion of n‐heptane was complete and dropped thereafter. The turnover number was observed to change from 0.07 to 2.26 s?1 as the dispersion changed from 0.33 to 0.09. The Koros–Nowark (K–N) test was used to check for the presence of internal diffusional incursions and Boudart's criterion was used for structural sensitivity determination. The K–N test indicated the absence of diffusional resistances while n‐heptane reforming was found to be structure sensitive on the Pt/Al2O3 catalyst. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The main purpose of the naphtha reforming process is to obtain high octane naphtha, aromatic compounds and hydrogen. The catalysts are bifunctional in nature, having both acid and metal sites. The metal function is supplied by metal particles (Pt with other promoters like Re, Ge, Sn, etc.) deposited on the support. The influence of the addition of Pb to Pt‐Re/Al2O3 naphtha reforming catalysts was studied in this work. The catalysts were prepared by co‐impregnation and they were characterized by means of temperature programmed reduction, thermal programmed desorption of pyridine and several test reactions such as cyclohexane dehydrogenation, cyclopentane hydrogenolysis and n‐heptane reforming. RESULTS: It was found that Pb interacts strongly with the (Pt‐Re) active phase producing decay in the metal function activity. Hydrogenolysis is more affected than dehydrogenation. Part of the Pb is deposited over the support decreasing the acidity and the strength of the most acidic sites. CONCLUSION: The n‐heptane reforming reaction shows that Pb modifies the stability and selectivity of the Pt‐Re catalysts. Small Pb additions increase the stability and greatly improve the selectivity to C7 isomers and aromatics while they decrease the formation of low value products such as methane and gases. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Isomerization of n‐hexane into bi‐ and tri‐branched products was studied at atmospheric pressure on Ni‐WOx/Al2O3‐SiO2 catalysts. Two groups of catalysts (A and B) were prepared by using the sol‐gel method. The objective of the present study is the selection of the catalyst having the best isomer (bi‐ and tri‐branched) yield under optimum operating conditions (reaction temperature, reduction temperature, flow duration, etc.). The results show that the introduction of tungsten (group B) modifies siginificantly the catalyst activity and that the optimum nickel amount in these catalysts is 15 wt. %. When a steady flow is achieved (100 min), the catalyst containing 15 % nickel and 10 % tungsten exhibits the highest and largest selectivity at a reaction temperature of 250°C and a reduction temperature of 430°C.  相似文献   

4.
A nickel (Ni) nanoparticle catalyst, supported on 4‐channel α‐Al2O3 hollow fibers, was synthesized by atomic layer deposition (ALD). Highly dispersed Ni nanoparticles were successfully deposited on the outside surfaces and the inside porous structures of hollow fibers. The catalyst was employed to catalyze the dry reforming of methane (DRM) reaction and showed a methane reforming rate of 2040 Lh?1gNi?1 at 800°C. NiAl2O4 spinel was formed when Ni nanoparticles were deposited on alpha‐alumina substrates by ALD, which enhanced the Ni‐support interaction. Different cycles (two, five, and ten) of Al2O3 ALD films were applied on the Ni/hollow fiber catalysts to further improve the interaction between the Ni nanoparticles and the hollow fiber support. Both the catalyst activity and stability were improved with the deposition of Al2O3 ALD films. Among the Al2O3 ALD coated catalysts, the catalyst with five cycles of Al2O3 ALD showed the best performance. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2625–2631, 2018  相似文献   

5.
LaNiO3/γ‐Al2O3 catalysts containing 10, 15, 20, and 25 wt % Ni were prepared by a combination of sol gel with propionic acid as solvent and an impregnation method (LNA‐acid) as well as with ethanol as solvent and addition of acetic acid (LNA‐eth). Catalytic activities towards CO2 reforming of CH4 were tested in a fixed‐bed reactor at 700 °C, 750 °C, and 800 °C. LNA‐eth with 20 wt % Ni exhibited the best activities in dry reforming of methane and a good activity and stability, when it was tested at 800 °C during 75 h time‐on‐stream.  相似文献   

6.
Hydrogenation of 4‐chloro‐2‐nitrophenol (CNP) was carried out at moderate hydrogen pressures, 7–28 atm, and temperatures in the range 298–313 K using Pt/carbon and Pd/γ‐Al2O3 as catalysts in a stirred pressure reactor. Hydrogenation of CNP under the above conditions gave 4‐chloro‐2‐aminophenol (CAP). Dechlorination to form 2‐aminophenol and 2‐nitrophenol is observed when hydrogenation of CNP is carried out above 338 K, particularly with Pd/γ‐Al2O3 catalyst. Among the catalysts tested, 1%Pt/C was found to be an effective catalyst for the hydrogenation of CNP to form CAP, exclusively. To confirm the absence of gas–liquid mass transfer effects on the reaction, the effect of stirring speed (200–1000 rpm) and catalyst loading (0.02–0.16 g) on the initial reaction rate at maximum temperature 310 K and substrate concentration (0.25 mole) were thoroughly studied. The kinetics of hydrogenation of CNP carried out using 1%Pt/C indicated that the initial rates of hydrogenation had first order dependence with respect to substrate, catalyst and hydrogen pressure in the range of concentrations varied. From the Arrhenius plot of ln rate vs 1000/T, an apparent activation energy of 22 kJ mol?1 was estimated. © 2001 Society of Chemical Industry  相似文献   

7.
Ni‐Al2O3 catalyst activity was tested for methane steam reforming using two different reaction systems: a catalyst particle bed (0.42–0.5 mm catalyst particles diluted in SiC) with a surface area‐to‐volume ratio SA/V of 910 m–1 and a porosity ? of 52 % and a catalyst‐coated metal monolith with an SA/V of 3300 m–1 and an ? of 86 %. Under a steam‐to‐carbon ratio of 2.5 and at a temperature of 700 °C, the highest specific reaction rates were found for the catalyst‐coated monolith. The high SA/V and ?, together with the high rate of heat transfer of the metal monolith were found to be responsible of this optimum behavior. However, in both systems, the Ni‐Al2O3 catalyst suffered a catalyst deactivation during operation.  相似文献   

8.
The influence of indium on the properties of Pt–Re/Al2O3 catalysts used in naphtha reforming is studied. The addition of indium to the Pt–Re/Al2O3 catalyst produces a big decrease of acidity. It also produces an inhibition of the metal function, i.e., dehydrogenation and hydrogenolysis activity. The reaction of n-C5 isomerization shows that indium addition decreases the total activity of the Pt–Re catalyst but increases the selectivity to the i-C5 isomers. The selectivity to low cost light gases (C1–C3) is particularly decreased. The reaction of n-C7 reforming showed that addition of indium increases the stability of the catalyst and the selectivity to aromatics, and decreases the production of light gases.  相似文献   

9.
For emission control of volatile organic compounds (VOC), e.g., in the painting and printing industries, conventional Pt/Al2O3 and Co3O4‐CeO2 catalysts are used. On the Pt/Al2O3 catalyst, aromatic hydrocarbons containing a benzene ring such as toluene can be oxidized at a lower complete oxidation temperature than on Co3O4‐CeO2, under typical treatment conditions. However, ethyl acetate and isopropyl alcohol can be oxidized at a lower complete oxidation temperature on Co3O4‐CeO2 than on Pt/Al2O3. In this study, platinum was directly supported on Co3O4‐CeO2. Using chloroplatinic acid, the platinum cohered and the catalytic activity did not improve. But when the platinum was supported using platinum colloid coated with dispersant, high‐dispersion support of the platinum on the Co3O4‐CeO2 surface was achieved, and toluene, ethyl acetate, and isopropyl alcohol could be oxidized at less than 250 °C.  相似文献   

10.
Abstract

A series of Cu-K/Al2O3 catalysts were synthesized by wet impregnation technique. The reduced catalysts were further used for conversion of carbon dioxide to methane and carbon monoxide. Moreover, the fresh and used catalysts were characterized to investigate the changes in the surface morphology, metal dispersion, surface area, crystalline phases, and functional groups of studied catalysts. The SEM analysis of fresh and spent catalysts showed no remarkable difference in surface morphology with irregular shaped agglomerated particles. Furthermore, TEM micrographs presented the well distribution of metal catalyst over alumina support. The decrease in surface area from 115 to 77?m2/g for Cu1.62-K0.5/Al2O3 after reaction was related to sintering and oxidation of catalyst during reaction. XRD revealed the disappearance of some minor peaks which can be associated with the sintering of spent catalyst. FTIR also presented some new peak for spent catalyst which can be linked with metal oxides. Moreover, various reaction conditions of temperature (230, 400, and 600?°C), pressure (1 and 7?bar), and feed molar ratio of H2/CO2 (2:1 and 4:1) were investigated using different Cu loading (0, 1, 1.25, 1.62, and 4 weight percent). A maximum CO2 conversion of 63% with 39% CH4 selectivity was achieved by using Cu1.62-K0.5/Al2O3 at 600?°C, molar ratio of H2/CO2 4 under 7?bar. The presence of K on the surface of synthesized catalyst increased the CO2 conversion from 48% (Cu1/Al2O3) to 55% (Cu1-K0.5/Al2O3) at above mentioned reaction conditions which suggested the promoter effect of K during conversion of carbon dioxide.  相似文献   

11.
A series of γ‐Al2O3‐supported nickel‐based catalysts were evaluated in continuous hydrogenation of toluene. Sr‐ and poly(ethylene glycol) 800 (PEG800)‐modified Ni/γ‐Al2O3 catalysts provided the best activity with high conversion of toluene and selectivity for methylcyclohexane which was ascribed to the addition of Sr and PEG800 during the preparation process, resulting in smaller and highly dispersed Ni species on the surface and in the pores of γ‐Al2O3. Furthermore, the formation of SrCO3 and NiAl2O4 is believed to be advantageous for the dispersion and stabilization of the active Ni species, accounting for its good stability.  相似文献   

12.
CeO2‐CrOy loaded on γ‐Al2O3 was investigated in this work for the oxidative dehydrogenation (ODH) of propane under oxygen‐free conditions. The ODH experiments of propane were conducted in a fluidized bed at 500°C‐600°C under 0.1 Mpa. The prepared catalyst was characterized by N2 adsorption‐desorption measurements, H2‐temperature‐programmed reduction, O2‐temperature‐programmed desorption, NH3‐temperature‐programmed desorption, x‐ray photoelectron spectroscopy, and x‐ray diffraction. The change in the selectivity of propylene resulted from the thermal cracking of the propane and the competition for lattice oxygen in the catalyst between propylene formation and propane and propylene combustion. Therefore, to achieve higher propylene yield in the industry, the reaction temperature should be 550°C‐575°C for the 17.5Cr‐2Ce/Al catalyst. The results of H2‐TPR (from 0.2218 mmol/g‐0.3208 mmol/g) revealed that the addition of CeO2 can enhance the oxygen capacity of CrOy. Compared with that for 17.5Cr/Al, the conversion can be enhanced from 22.4% to 28.5% and the selectivity of propylene can be improved from 72.2% to 75.9% for the 17.5Cr‐2Ce/Al catalyst. In addition, CeO2 can inhibit the evolution of lattice oxygen (O2?) to electrophilic oxygen species (O2?), causing the average COx (CO and CO2) selectivity to decrease from 9.64% to 6.31%.  相似文献   

13.
The activity of a novel Ni‐Re/Al2O3 catalyst toward partial oxidation of methane was investigated in comparison with that of a precious‐metal Rh/Al2O3 catalyst. Reactions involving CH4/O2/Ar, CH4/H2O/Ar, CH4/CO2/Ar, CO/O2/Ar, and H2/O2/Ar were performed to determine the kinetic expressions based on indirect partial oxidation scheme. A mathematical model comprising of Ergun equation as well as mass and energy balances with lumped indirect partial oxidation network was applied to obtain the kinetic parameters and then used to predict the reactant and product concentrations as well as temperature profiles within a fixed‐bed microreactor. H2 and CO production as well as H2/CO2 and CO/CO2 ratios from the reaction over Ni‐Re/Al2O3 catalyst were higher than those over Rh/Al2O3 catalyst. Simulation revealed that much smoother temperature profiles along the microreactor length were obtained when using Ni‐Re/Al2O3 catalyst. Steep hot‐spot temperature gradients, particularly at the entrance of the reactor, were, conversely, noted when using Rh/Al2O3 catalyst. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1691–1701, 2018  相似文献   

14.
Stakheev  A. Yu.  Gabrielsson  P.  Gekas  I.  Teleguina  N. S.  Bragina  G. O.  Tolkachev  N. N.  Baeva  G. N. 《Topics in Catalysis》2007,42(1-4):143-147
Pt/Al2O3 and Pt/BaO/Al2O3 catalysts (1 wt% Pt, 10 wt%BaO) were sulfated under conditions simulating a real NSR catalyst operation. Comparative TPR and XPS studies of sulfur removal from Pt/Al2O3 and Pt/BaO/Al2O3 catalysts indicate that the sulfur removal from Al2O3 surface precedes reductive decomposition of BaSO4 (250–400 °C). Barium sulfate decomposition started with further increase in desulfation temperature at the point of surface atomic ratio Ba:S = 1 (~450o). Simultaneously, an intensive formation of sulfide species on the catalyst surface was observed. Thermodynamic analysis of the desulfation process allows us to hypothesize that barium sulfide formation may hinder sulfur removal under reducing conditions.  相似文献   

15.
Monolithic Ni‐Al2O3/Ni‐foam catalyst is developed by modified wet chemical etching of Ni‐foam, being highly active/selective and stable in strongly exothermic CO2 methanation process. The as‐prepared catalysts are characterized by x‐ray diffraction scanning electron microscopy, inductively coupled plasma atomic emission spectrometry, and H2‐temperature programmed reduction‐mass spectrometry. The results indicate that modified wet chemical etching method is working efficiently for one‐step creating and firmly embedding NiO‐Al2O3 composite catalyst layer (~2 μm) into the Ni‐foam struts. High CO2 conversion of 90% and high CH4 selectivity of >99.9% can be obtained and maintained for a feed of H2/CO2 (molar ratio of 4/1) at 320°C and 0.1 MPa with a gas hourly space velocity of 5000 h?1, throughout entire 1200 h test over 10.2 mL such monolithic catalysts. Computational fluid dynamics calculation and experimental measurement consistently confirm a dramatic reduction of “hotspot” temperature due to enhanced heat transfer. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4323–4331, 2015  相似文献   

16.
Different Pt‐based catalyst layers have been prepared and tested in a stacked foil microreactor for CO oxidation and preferential oxidation of CO in presence of hydrogen. The reactions were performed on Pt without support by impregnation of a pre‐oxidized microstructured metal plate, Pt/Al2O3 and Pt/CeO2 based on sol methods as well as Pt/nano‐Al2O3, a combined method of sol‐gel and nanoparticle slurry coating. The ceria based sol‐gel catalyst was much more active for CO oxidation than alumina based sol‐gel catalysts at low temperature. However, total oxidation was only obtained at higher temperature on the alumina based catalysts. The combined method seems to have advantages in terms of less internal mass transfer limitation when trying to increase the catalyst coating thickness based on sol‐gel approaches due to no reduction of CO selectivity up to 300 °C reaction temperature. Experiments on CO oxidation with the Pt/CeO2 catalyst have been conducted in an oxygen supply microreactor to evaluate the catalyst performance under sequential oxygen supply to reaction zone (CO excess).  相似文献   

17.
Na promoted Pt/TiO2 catalysts have been studied under high severity, near equilibrium, conditions for use as a single stage WGS catalyst. Addition of 3 wt% Na to a 1 wt% Pt/TiO2 catalyst has been found to improve water gas shift activity significantly compared to Pt/TiO2, Pt/CeO2, and Pt–Re/TiO2 catalysts. This catalyst is stable when the reaction temperature is higher than 250 °C. Deactivation occurred when the reaction temperature was lower than 250 °C, however, returning the temperature to higher than 250 °C fully recovered activity. TEM observations revealed that addition of Na inhibited Pt particle sintering. These results suggest that Na promoted Pt/TiO2 is a promising single stage water gas shift catalyst for small scale hydrogen production.  相似文献   

18.
A CaO‐B2O3‐SiO2 (CBS) glass/40 wt% Al2O3 composite sintered at 900°C exhibited a dense microstructure with a low porosity of 0.21%. This composite contained Al2O3 and anorthite phases, but pure glass sintered at 900°C has small quantities of wollastonite and diopside phases. This composite was measured to have a high bending strength of 323 MPa and thermal conductivity of 3.75 W/(mK). The thermal conductivity increased when the composite was annealed at 850°C after sintering at 900°C, because of the increase in the amount of the anorthite phase. 0.25 wt% graphene oxide and 0.75 wt% multi‐wall carbon nanotubes were added to the CBS/40 wt% Al2O3 composite to further enhance the thermal conductivity and bending strength. The specimen sintered at 900°C and subsequently annealed at 850°C exhibited a large bending strength of 420 MPa and thermal conductivity of 5.51 W/(mK), indicating that it would be a highly effective substrate for a chip‐type supercapacitor.  相似文献   

19.
The influence of aging environment of model diesel oxidation catalyst Pt/Al2O3 on the NO oxidation activity is studied. The fresh catalyst Pt/Al/F (calcined in air at 500 °C) is aged with or without phosphorus (P) poisoning (7.5 wt%) at 800 °C either in air (P/Pt/Al/O or Pt/Al/O) or in simulated diesel exhaust (P/Pt/Al/R or Pt/Al/R). Catalyst aged under diesel exhaust environment (Pt/Al/R) surprisingly presents the best NO oxidation activity under excess of O2 followed by the fresh (Pt/Al/F) and thermally aged (Pt/Al/O) catalysts. The activity difference between the catalysts is quite large, especially between Pt/Al/R and Pt/Al/O that are aged at the same temperatures but under different environments suggesting the importance of the aging environment for the catalytic activity. The NO oxidation activity of P poisoned catalysts P/Pt/Al/R and P/Pt/Al/O is minute as compared to their P free counter parts indicating that chemical aging is more detrimental for catalytic efficiency than thermal aging.  相似文献   

20.
Deoxygenation is a critical step in making hydrocarbon‐rich biofuels from biomass constituents. Although the thermal effects of oxygenate aromatization have been widely reported, the effect of pressure on this critical reaction has not yet been closely investigated, one primary reason being the unavailability of a reactor that can pyrolyze oxygenates, especially those in solid form, under pressurized conditions. Here, the first of a series of studies on how oxygenates behave when catalytically pyrolyzed under elevated pressure and temperature conditions is reported. Methanol, the simplest alcohol, was selected as the candidate to study the chemical phenomena that occur under pressurized catalytic pyrolysis. The reactions were carried out over the shape‐selective catalyst ZSM‐5 (SiO2/Al2O3 = 30) under varying pressure (0 to 2.0684 MPa (300 psi) in 0.3447 MPa (50 psi) increments) and temperature (500 to 800 °C in 50 °C increments) conditions. Benzene, toluene, ethyl benzene, and xylenes (BTEX) were analyzed as the deoxygenated products of the reaction. The results indicate that the reactor pressure significantly affects deoxygenated product composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号