首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Coronary heart disease (CHD) is a major health problem and a major cause of death in most countries. Evidence has been presented that gene polymorphisms (HindIII, PvuII and Ser447Ter) of lipoprotein lipase (LPL) are risk factors of coronary artery disease (CAD).

Aim

Our objective of the present investigation was to determine whether 3 LPL polymorphisms (LPL-HindIII, LPL-PvuII and LPL-Ser447Ter) can be considered as independent risk factors for CAD in the Saudi population.

Methods

We recruited 120 CAD subjects, confirmed angiographically with identical ethnic backgrounds and 65 control subjects. Polymerase chain reaction-restriction fragment length polymorphisms (RFLP) technique was used to detect the polymorphisms of the LPL gene.

Results and conclusion

For the HindIII genotype, within the CAD group, the frequencies of the H+H+ were found in 50.8%, whereas 44.2% carried the HH+ genotype, and 5% carried the HH genotype. Within the control group, the H+H+ genotype was found in 44.6%, whereas 35.4% carried the HH+ genotype, 20% carried the HH genotype. The odds ratio (OR) of HindIII genotype H+H+ vs. HH genotype at 95% Confidence Interval (CI) were 4.6 (1.57–13.2) and p < 0.005, hence showing no significant association with CAD. For the PvuII genotype, within the CAD group the frequencies of the P+P+ found in 41.7% whereas 43.3.2% carried the PP+ genotype, and 15% carried the PP genotype. Within the control group the P+P+ was found in 38.5%, 43.0% carried the PP+ genotype, and 18.5% carried the PP genotype. The OR of PvuII genotype P+P+ vs. PP genotypes (95% CI) is 1.33 and p = 0.52; hence, it was also insignificant to show association with the disease. For the Ser447Ter genotype, within the CAD group, the frequencies of the C/C found in 83.3%, whereas 16.7% carried the C/G genotype. Within the control group, the C/C was found in 87.7% and 12.3% carried the C/G genotype. We did not get any GG genotypes in control as well as patients for this gene. It can be concluded that C allele of gene masks the presence of G allele in the Saudi population. The OR of CG + GG vs. CC (95% CI) is 1.43 from 0.59 to 3.44 which is insignificant. Hence this gene also has no significant association with CAD in the Saudi population.  相似文献   

3.
Oxidized LDL has been obtained by incubation with copper ions (Cu‐LDL) or various kinds of cells. LDL incubated with xanthoma tissues (x‐LDL) is considered a model of in vivo oxidized LDL that has extravasated into xanthoma lesions. To investigate the mechanism of x‐LDL formation, we studied the effects of various enzyme inhibitors or antioxidants on the oxidation process of LDL. Thiobarbituric acid‐reactive substance (TBARS) levels, electrophoretic mobility and spectrophotometric pattern of the oxidized LDL were examined. Antioxidants suppressed TBARS formation in both x‐LDL and Cu‐LDL. Enzyme inhibitors inhibited TBARS levels in x‐LDL, but not in Cu‐LDL. All the enzyme inhibitors and antioxidants, except for the cyclooxygenase inhibitor, inhibited the anodic electrophoretic mobility of x‐LDL. The anodic electrophoretic mobility of Cu‐LDL was suppressed only with antioxidants. Spectrophotometry indicated that an increase in the absorbance at 240 nm was observed in Cu‐LDL, but not in x‐LDL. x‐LDL oxidation is primarily catalyzed by phospholipase A2, and subsequently generated polyunsaturated free fatty acids propagate the peroxidation. Fatty acid hydroperoxides conjugated with dienes are not synthesized in x‐LDL. On the other hand, non‐enzymatic oxidants, such as superoxide anion and hydroxyl radicals generate Cu‐LDL with diene‐conjugated fatty acid hydroperoxides.  相似文献   

4.
This article reports the toughness improvement of high‐density polyethylene (HDPE) by low‐density polyethylene (LDPE) in oscillating packing injection molding, whereas tensile strength and modulus are greatly enhanced by oscillating packing at the same time. Compared with self‐reinforced pure HDPE, the tensile strength of HDPE/LDPE (80/20 wt %) keeps at the same level, and toughness increases. Multilayer structure on the fracture surface of self‐reinforced HDPE/LDPE specimens can be observed by scanning electron microscope. The central layer of the fracture surface breaks in a ductile manner, whereas the break of shear layer is somewhat brittle. The strength and modulus increase is due to the high orientation of macromolecules along the flow direction, refined crystallization, and shish‐kebab crystals. Differential scanning calorimetry and wide‐angle X‐ray diffraction find cocrystallization occurs between HDPE and LDPE. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 799–804, 1999  相似文献   

5.
The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead‐filled low‐density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999  相似文献   

6.
This article presents the tensile properties and morphological characteristics of binary blends of the high‐density polyethylene (HDPE) and a linear low‐density polyethylene (LLDPE). Two constituents were melt blended in a single‐screw extruder. Injection‐molded specimens were evaluated for their mechanical properties by employing a Universal tensile tester and the morphological characteristics evaluated by using a differential scanning calorimeter and X‐ray diffractometer. It is interesting to observe that the mechanical properties remained invariant in the 10–90% LLDPE content. More specifically, the yield and breaking stresses of these blends are around 80% of the corresponding values of HDPE. The yield elongation and elongation‐at‐break are around 65% to corresponding values of HDPE and the modulus is 50% away. Furthermore, the melting endotherms and the crystallization exotherms of these blends are singlet in nature. They cluster around the corresponding thermal traces of HDPE. This singlet characteristic in thermal traces entails cocrystallization between these two constituting components. The clustering of thermal traces of blends near HDPE meant HDPE‐type of crystallites were formed. Being nearly similar crystallites of blends to that of HDPE indicates nearness in mechanical properties are observed. The X‐ray diffraction data also corroborate these observations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2604–2608, 2002  相似文献   

7.
This article is intended to establish a comprehensive interpretation of the noticeable differences in the dynamic mechanical behaviors of polypropylene/talc composites with and without modified interphases. The latter are discussed on the basis of different surface treatments applied to the reinforcement particles. To this end, a series of 75/25 (w/w) polypropylene/talc composites with and without interfacial modifications from the reinforcement side were evaluated by dynamic mechanical analysis. The proven capability of this technique analysis to follow the transitions and structural and morphological changes in organic polymers, which are largely influenced by the degree of compatibility between the components of heterogeneous materials based on polymers, was used in this study to check and discuss the kinds and efficiencies of different physisorption‐ and chemisorption‐based processes carried out on the surface of talc particles. We tackled this study by embracing the different relaxation phenomena taking place in the polymer matrix. To this end, five different temperature intervals were distinguished according to the relaxation phenomena taking place. Finally, a correlation between the parameters on the microscopic scale and others on the macroscopic scale appeared to emerge. Thus, the interfacial effects caused by the modified reinforcements could be determined by observations on either scale. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The effect of the branch content (BC) and composition distribution (CD) of linear low‐density polyethylene (LLDPE) on the thermal and mechanical properties of its blends with LDPE were studied. All blends and pure resins were conditioned in a Haake PolyDrive blender at 190°C and in the presence of adequate amounts of antioxidant. Two metallocene LLDPEs (m‐LLDPE) and one Ziegler–Natta (ZN) hexene LLDPE were melt blended with the same LDPE. The effect of the BC was investigated by blending two hexene m‐LLDPEs of similar weight‐average molecular weights and molecular weight distributions but different BCs with the same LDPE. The effect of the CD was studied by using a ZN and an m‐LLDPE with similar weight‐average molecular weights, BCs, and comonomer type. Low‐BC m‐LLDPE blends showed separate crystallization whereas cocrystallization was observed in the high‐BC m‐LLDPE‐rich blends. However, ZN‐LLDPE/LDPE blends showed separate crystallization together with a third population of cocrystals. The influence of the crystallization behavior was reflected in the mechanical properties. The BC influenced the modulus, ultimate tensile strength, and toughness. The addition of a small amount of LDPE to a low‐BC m‐LLDPE resulted in a major improvement in the toughness, whereas the results for the high‐BC pair followed the additivity rule. ZN‐LLDPE blends with LDPE blends were found to be more compatible and exhibited superior mechanical properties compared to m‐LLDPE counterparts with the same weight‐average molecular weight and BC. All mechanical properties of ZN‐LLDPE blends follow the linear rule of mixtures. However, the CD had a stronger influence on the mechanical properties in comparison to the BC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2488–2498, 2005  相似文献   

9.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

10.
The molecular characteristics of the room‐temperature soluble fractions (RT solubles) of three low‐density polyethylene film resins were characterized by size‐exclusion chromatography (SEC), SEC combined with FTIR (SEC–FTIR), and nuclear magnetic resonance spectroscopy (NMR). The high‐molecular‐weight components of the RT solubles were found to be highly branched components with uniform short‐chain branching (SCB) profiles. For the low‐molecular‐weight components, however, SCB content was a function of molecular weight (MW), increasing with an increase in MW. When the chain ends were considered as SCB equivalents, the distribution of the sum of SCB and chain ends across the molecular weight distribution was practically flat, suggesting that the driving force for polymer chains remaining in solution at RT was the length of the undisrupted methylene sequence in the backbone, or methylene run length, which was too short to form crystal lamellae with a melting temperature above RT, regardless of the molecular weight of the polymer. Moreover, the NMR results revealed that the polymer components of the RT solubles had “superrandom” SCB distributions, that is, the fraction of comonomer clusters in the polymer chains of the RT solubles was lower than that predicted by Bernoullian statistical analysis, indicating that the probability of adding a comonomer to a comonomer‐ended propagating chain was lower than that of adding a comonomer to an ethylene‐ended one, presumably because of an unfavorable steric effect. Furthermore, contrary to the common belief that RT solubles are mainly low‐molecular‐weight polymers, high‐molecular‐weight components were found in high concentrations in the RT solubles, with a cutoff MW as high as 1,000,000 g/mol. The proportion of RT solubles in the film resins was found to depend on the type of resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4992–5006, 2006  相似文献   

11.
A novel series of shape memory blends of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) were prepared using a simple physical blending method. The mechanical, thermal and shape memory properties of the blends were studied and schemes proposed to explain their dual and triple shape memory behaviors. It was found that the microstructures played an important role in the shape memory process. In TPI/LDPE blends, both the TPI crosslinking network and LDPE crystalline regions could work as fixed domains, while crystalline regions of LDPE or TPI could act as reversible domains. The shape memory behaviors were determined by the components of the fixed and reversible domains. When the blend ratio of TPI/LDPE was 50/50, the blends showed excellent dual and triple shape memory properties with both high shape fixity ratio and shape recovery ratio. © 2017 Society of Chemical Industry  相似文献   

12.
Microcellular polymeric materials can be obtained by the polymerization of a high‐internal‐phase emulsion. These materials are good candidates as targets toward inertial confinement fusion. This application requires severe specifications, including a very low density and a small cell size. In this study, we examined the influence of parameters such as emulsification conditions, surfactant nature, and the presence of a porogen on the obtainment of those requirements. It was possible to obtain microcellular polymeric foams with apparent densities as low as 0.0126 g/cm3. However, it was difficult to obtain very low material density and still maintain a small average pore size. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2053–2063, 2005  相似文献   

13.
In this work, four biocides were used for the purpose of growth inhibition of fungi and algae in linear low‐density polyethylene (LLDPE) specimens. Benzimidazol‐2‐yl‐carbamicacid methyl ester [carbendazim (CB)], 5‐chloro‐2‐(2,4‐dichlorophenoxy)phenol [triclosan (TS)], and 3‐iodo‐2‐propynyl N‐butylcarbamate [iodopropynyl butylcarbamate (IPBC)] were used as antifungal agents, and 2‐methylthio‐4‐ethylamino‐6‐tert‐butylamino‐triazin‐1,3,5 [terbutryn (TT)] was used as an antialgal agent. Antifungal performance was evaluated by disk diffusion and dry weight techniques, and antialgal activities were carried out by disk diffusion and chlorophyll A methods. Aspergillus niger TISTR 3245 and Chlorella vulgaris TISTR 8580 were used as the testing fungus and alga, respectively. The experimental results suggested that the wettabilities of LLDPE specimens changed with the incorporation of CB, TS, IPBC, and TT biocides without significant changes in chemical structures and mechanical properties of the LLDPE. IPBC with the recommended content of 10,000 ppm was found to give the most satisfactory growth inhibition of A. niger. Antifungal performance evaluations were dependent on the testing methods used, whereas those for antialgal activity were not. The optimum concentration of TT agent for effective killing of C. vulgaris was 750 ppm; this loading could be reduced from 750 to 250 ppm by the addition of either TS or IPBC agent. TS and IPBC could be used as antialgal promoters in the LLDPE specimens. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

14.
Radiation‐induced graft polymerization of low‐density polyethylene with N‐vinylpyrrolidone, LDPE‐g‐PNVP, was used as a starting material for the synthesis of polyfunctionally substituted heterocyclic products. Thus, LDPE‐g‐PNVP reacts with ylidenemalononitrile derivatives to give the Michael addition products. In multistep reaction, LDPE‐g‐PNVP reacts with N,N‐dimethylformamide dimethyl acetal (DMFDMA), hydrazine hydrate and malononitrile, respectively, to give a hydropyrrolopyridazine derivative. The latter could also be prepared via the reaction of LDPE‐g‐PNVP with DMFDMA, followed by treating with cyanoacetohydrazide. Also, LDPE‐g‐PNVP reacts with malononitrile to give an adduct product, dimer malononitrile derivative 13. The latter reacts with sulfur element to afford the thiophene derivative. Furthermore, this adduct reacts with hydrazine hydrate to isolate the original starting material, LDPE‐g‐PNVP, and aminopyridine derivative. The resulted films were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H‐NMR) mass spectroscopy, elemental analysis, swelling behavior, and electron scanning microscope. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2963–2970, 1999  相似文献   

15.
Silver‐coated copper nanowires (AgCuNWs) are prepared by chemical plating method with copper nanowires (CuNWs) and Ag‐amine reagent. The prepared AgCuNWs with silver content of 66.52 wt.%, diameter 28–33 nm exhibited improved anti‐oxidation behaviour. The silver coating on AgCuNWs can effectively reduce the formation of copper oxide under room temperature. The temperature at which nanowires begin to gain weight can be improved from 85 to 230°C and the maximum weight gain can be decreased from 20.3% to 3.2% by applying silver coating. The volume electrical resistivity of the AgCuNWs filled low‐density polyethylene nanocomposites is lower than that of the CuNWs filled low‐density polyethylene nanocomposites with same volume percentage of fillers because the silver content in the AgCuNWs is not oxidised during compression moulding. © 2012 Canadian Society for Chemical Engineering  相似文献   

16.
A poly(butylene terephthalate) (PBT)/linear low‐density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method. For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE‐g‐AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE‐g‐AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE‐g‐AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/LLDPE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE‐g‐AA decreased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1059–1066, 2002; DOI 10.1002/app.10399  相似文献   

17.
In this study, a two‐dimensional mathematical model was developed considering the hydrodynamic behaviour of a circulating fluidised bed biomass gasifier (CFBBG), which is also applicable for other low‐density particles. In the modelling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel's [Kunii and Levenspiel, Powder Technol. 61, 193‐206 (1990)] model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al.'s [Zhang et al., Chem. Eng. Sci. 46(12), 3045‐3052 (1991)] correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidising agent. The column is 10 m in height and 280 mm in diameter, and is equipped with pressure transducers to measure axial pressure profile and with a reflective optical fibre probe to measure local solids holdup. A satisfactory agreement between the model predictions and experimental data was found. © 2011 Canadian Society for Chemical Engineering  相似文献   

18.
The conductivities of blends of low‐density polyethylene and poly(4‐vinyl pyridine) (P4VP) were studied. The blends were synthesized by in situ sorption and thermal polymerization of 4‐vinylpyridine in low‐density polyethylene. They showed, after iodine doping, conductivities of 1.7 to 5.0 × 10?7 S cm?1 at 298 K, depending on the P4VP mass increment into the matrix. Their conductivities were one order of magnitude higher for measurements at 338 K. The optimum ratio of iodine to pyridine (n) which gave the highest conductivity was 0.21. The thermal stability of doped blends was acceptable for their uses as electrochemical devices. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 939–944, 2003  相似文献   

19.
The structure and adhesion properties of linear low‐density polyethylene (LLDPE) powder grafted with acrylic acid (AA) via ultraviolet light (UV) were studied by Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), and water contact angle, peel strength, and graft degree measurements. The results show that the chemically inert LLDPE powder can be graft‐copolymerized with AA via this photografting method. The graft degree increases with the ultraviolet irradiation time. The hydrophilicity of the grafted LLDPE powder and the peel strength of high‐density polyethylene (HDPE)/steel joint with the grafted LLDPE powder used as hot‐melt adhesive are improved considerably, as compared to that with the ungrafted LLDPE powder. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2549–2553, 2006  相似文献   

20.
In the present investigation the effects of the addition of organic additives (propanol, benzoic acid, iso‐amyl alcohol and carboxymethyl cellulose) on the critical gas velocity, (Usg)c, in an internal airlift loop reactor with low‐density particles (Nylon‐6 and polystyrene) were reported. Whereas the (Usg)c was reduced by adding the above additives, it increased with solids loading and density of the particles. The draft tube‐to‐reactor diameter ratio (DE/D) in the range of 0.5–0.6 gave minimum (Usg)c values. The proposed dimensionless correlation predicted the experimental data well. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号