首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By the use of gamma radiation the free radicals were generated in isotactic polypropylene. The polymer was exposed to the action of atmospheric oxygen and the peroxy radicals were formed. Then the decay of peroxy radicals was investigated at varying temperatures as a function of pressure. The rate constants of the free radical decay were determined, and the corresponding activation volumes were calculated. The kinetic characteristics imply that the peroxy radicals predominantly occured in amorphous region the polymer. The results suggest that useful information on molecular mechanism of radical reactions in the solid phase may be obtained from the determination of activation volumes.  相似文献   

2.
Photo‐polymerization behaviors of bisphenol‐A epoxy diacrylate (EPA) and six kinds of EPA‐derived resins containing different amounts of carboxylic acid, urethane, amide, and imide groups were studied by a photo differential scanning calorimetry. The dark polymerization was performed and pseudo‐steady state assumption of growing radicals was made to obtain the kinetic constants for propagation, bimolecular termination, monomolecular termination, and the concentration of growing radicals of different resins as a function of extent of reaction. Compared with EPA, it was found that the rate of polymerization and kinetic constants of the six resins were relatively small because the mobility of reacting species in resins was restricted by carboxylic acid, urethane, amide, and imide groups. Finally, three different photo‐initiators were used to initiate the polymerization, and their kinetic behaviors were compared. The effect of tertiary amine group of photo‐initiator on the rate of polymerization of resins having carboxylic acid group and the initiator efficiency were discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
4.
The generally accepted kinetic mechanism for free radical copolymerization was simplified by various assumptions and restrictions to give several realistic and easily evaluated models for the simulation of industrial molding. Six assumptions, including conversion-dependent rate coefficients and constant comonomer concentration ratios, were used to obtain a simplified model. Special cases of this simplified model were obtained by the following additional constraints: (1) Restriction C, consecutive inhibition and radical generation reactions; (2) Restriction I, constant initiator decomposition rate; (3) Restriction Z, zero termination rate for free radicals; and (4) Restriction K or P, all rate coefficients independent of conversion or only polymerization rate coefficient dependent on conversion. For various combinations of these restrictions, the time and concentration variables in the simplified model are separated and solved; the separate solutions are then combined in various ways to give models capable of predicting a wide variety of behavior. Many of these models have analytical solutions that greatly facilitate the evaluation of rate constants. Models based on restrictions KCI, PCI, and PCZ are shown to give good agreement with isothermal DSC data plotted as reaction rate versus time and, in a more sensitive test, as reaction rate divided by monomer concentration versus fractional conversion. Because of their predictive ability and ease of evaluating constants. Models PCI and PCZ are recommended for simulating industrial processing; they are particularly well suited for simulating compression molding of sheet molding compound.  相似文献   

5.
Diffusional limitations (the gel, glass, and cage effects) are manifested in several bulk free radical homopolymerizations as well as in random copolymerizations. These are associated with decreases of several orders of magnitude of the rate constants of termination, propagation, and initiation (the initiator efficiency), respectively. These phenomena have been modeled earlier using the free volume theory for the diffusivities of primary radicals, macro‐radicals, and monomer molecules, and have been applied to homopolymerizations. In this study, a similar model is developed for random bulk copolymerizations. The parameters of the model are fitted using isothermal data on styrene acrylonitrile random copolymerization carried out in small ampoules. Thereafter, best‐fit global correlations have been developed for this system. This enables the model to be used for studying non‐isothermal copolymerizations, as well as for carrying out optimization of industrial reactors, where non‐isothermal conditions are a norm. POLYM. ENG. SCI., 55:2098–2110, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Recent government mandates have lowered the permissible global warming potential (GWP) for refrigerants in mobile air conditioning substantially below that of the hydrofluorocarbon products that are used currently. Potential replacements, hydrofluoro‐olefins (HFO), have a reduced impact on the ozone layer and lower GWP. Many desirable HFO compounds, such as HFO‐1234yf, can be produced utilizing chlorocarbons as feedstocks such as the preferred 1,1,2,3‐tetrachloropropene (TCPE). TCPE can be produced by several routes; however, producing TCPE from 1,2‐dichloropropane (PDC) is potentially more desirable environmentally and economically since PDC is a byproduct of propylene oxide and allyl chloride production. One process option is to convert PDC to pentachloropropane (PCP) intermediates by chlorination, followed by dehydrochlorination of the PCPs to produce TCPE. In this work, we show that PCPs can be produced through the chlorination of PDC in a free‐radical liquid phase reaction and have developed a kinetic model for PDC chlorination based on the relevant free radical elementary reactions. Thermodynamic properties including standard heats of formation, standard entropies of formation, and heat capacities for the radical and non‐radical species were estimated by using ab initio and COSMOtherm calculations and validated against available experimental data. The reaction equilibrium constants were determined from the Gibb's free energies of the reactants and products. Phase equilibria were calculated by means of a consistent set of thermodynamic properties of the species. In addition, physical properties such as the vapor pressure of pure components involved in the reaction network were also estimated. Ab initio transition state calculations were employed to estimate the rate parameters including pre‐exponential factors and activation energies for the relevant reactions. The activation energies of some key reactions were then adjusted to match experimental data. The resulting kinetic model provided a basis for process yield optimization and scale up. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1174–1191, 2016  相似文献   

7.
Free‐radical terpolymerization of α‐methylstyrene/styrene/acrylic acid (AMS/ST/AA) in a continuous stirred tank reactor (CSTR) was studied theoretically and experimentally. A series of reactions were conducted to investigate the effect of the reaction temperature, residence time, solvent contents, initiator concentration, chain‐transfer agent level, and different monomer compositions on the molecular weight distribution (MWD). The mathematical model based on “the instantaneous property method (IPM)” and the pseudokinetic rate constant method was introduced and modified to predict the MWD of the bulk terpolymer produced in a CSTR. The effects of process variables were included in the mathematical model. Extensive comparisons were made between the theoretical results and experimental values. The rate of the free‐radical terpolymerization of AMS/ST/AA was comparatively slow and it was found that the concentration of α‐methylstyrene had a strong influence on the molecular weight and polydispersity of the MWD. This presumably reflected the existence of a normal bimolecular termination rate and a slow propagation rate due to steric hindrances at the doubly substituted vinyl carbon atom or transfer of the allylic hydrogen from the α‐methyl group. Good agreement was obtained between calculated MWD and the experimental one by assuming that the disproportionation termination of free radicals was the dominant chain‐stoppage mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 479–487, 2001  相似文献   

8.
The importance of diffusion‐controlled (DC) effects on controlled radical polymerization (CRP) processes has been rather controversial and usually considered only if there is some mismatch between experimental data and model predictions of polymerization rate and molecular weight averages. Results from an experimental study designed to create conditions in which DC effects may be present from the outset for the bimolecular nitroxide‐mediated radical polymerization (NMRP) of styrene in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) and dibenzoyl peroxide (BPO), are presented herein. The experiments consisted of adding size exclusion chromatography (SEC) polystyrene (PS) standards or nitroxyl‐capped PS (of different molecular weights, in several proportions), to a conventional recipe of bimolecular NMRP of styrene, and studying the effect of their presence on polymerization rate and molecular weight development. A previously developed kinetic model for NMRP of styrene was modified to take into account the presence of prepolymer as an inert “solvent,” or as a monomolecular “controller” of high molecular weight. The effects of DC reactions (propagation, termination, activation, and deactivation of polymer radicals) were modeled using conventional free‐volume theory. Reasonably, good agreement between experimental data and model predictions with either modeling approach was obtained. It was concluded that DC effects are weak in the NMRP of styrene, even in the presence of prepolymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Plasma polymerization of 4-vinyl pyridine (4-VP) proceeds through a gas-phase free radical mechanism to yield a film that retains much of the organic functionality of the monomer. During the deposition process, free radicals, which have been shown to quickly react with oxygen, are trapped to yield a film with a nascent peroxy radical density of 2.9 × 1018 spins/gas quantified by electron spin resonance (ESR) spectroscopy. In air at room temperature, peroxy radicals in the film react to produce carbonyl, hydroxyl, and ether structures in the polymer that was monitored using infrared (IR) spectroscopy. The free radical population was found to decay rapidly at first and then reach an apparent steady state after 30 hr. As the spin density decreases, a concomitant growth of vibrational modes associated with oxygen-containing functional groups was observed in the IR spectrum of the film. The relative population of oxygen-containing groups continued to increase even after the free radical population reached steady state. This slow, auto-oxidative effect may be attributed, in part, to free radical centers that are anchored to the polymer chain in regions of high crosslinking. In such regions, limited segmental mobility may limit the rate of radical-radical recombination (termination) proceses relative to oxidative radical-center. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The free‐radical retrograde‐precipitation polymerization (or FRRPP) process, a free‐radical polymerization that occurs above the lower critical solution temperature (LCST), was extended to copolymer formation. Control over the rate of polymerization and entrapment of polymer radicals in the FRRPP process was used to generate tapered styrene–acrylic acid block copolymers. To show the effectiveness of the FRRPP process, the same procedure was used with solvents that are not LCST‐based precipitants for the polymer. Kinetic data show substantial chain termination in non‐FRRPP copolymerization systems. Molecular weight information also shows propagation control in the FRRPP system. Solubilization and emulsification studies also indicate the capability of the FRRPP system in generating a much higher proportion of amphiphilic tapered block copolymers in the solid product. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 426–431, 2003  相似文献   

11.
The kinetics of ring‐opening polymerization of D ,L ‐lactide with 2‐ethylhexanoic acid zinc (II) salt as catalyst and methanol as co‐catalyst at different temperatures is investigated. A previously proposed kinetic model accounting for reactions such as activation, propagation, chain transfer, transesterification and thermal non‐radical random chain scission has been applied to simulate the experimental results of conversion and average molecular weights. The relevance of some side reactions, mainly transesterifications and chain scission, has been verified all over the studied temperature range and the corresponding rate constants have been estimated. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Multivinyl monomers that react to form highly crosslinked, biodegradable networks are being developed as scaffolds for tissue engineering and vehicles for drug delivery; however, this work demonstrates their usefulness in characterizing better the complexities of the kinetics and structural evolution during crosslinking photopolymerization. The molecular weight distributions (MWDs) of the degradation products of networks formed through the free radical photopolymerization of multivinyl monomers validate a novel kinetic model to test hypotheses as to the important kinetic mechanisms during crosslinking. The kinetic model, in conjunction with the experimental results for the degradable network, provides insight into the fundamental termination mechanisms (i.e. chain length dependent termination (CLDT), chain transfer to either a unimolecular species or polymer, and the accumulation of persistent radicals) that control the MWD of the backbone kinetic chains throughout the polymerization. Specifically, the importance of CLDT during autoacceleration and the impact of light intensity on the MWD of the backbone kinetic chains are presented.  相似文献   

13.
Both the isothermal and non‐isothermal polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) with barbituric acid (BTA) were investigated by the differential scanning calorimeter. The experimental results showed that the polymerizations of BMI with BTA were governed by the competitive Michael addition reaction and free radical polymerization mechanisms. Furthermore, the contribution of free radical polymerization becomes more important when the mole fraction of BTA decreases. 1H NMR and 13C NMR measurements further support the coexistence of the Michael addition reaction and free radical polymerization mechanisms. A preliminary kinetic model that took into account the competitive Michael addition reaction and free radical polymerization mechanisms was developed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
Thermal oxidation process of styrene‐butadiene‐styrene (SBS) copolymer was studied by using a variety of analytical and spectroscopic methods including thermal analysis, dynamic mechanical analysis and FTIR spectroscopy. The experimental results indicate that the thermal oxidation process of SBS is a free radical self‐catalyzed reaction containing four steps (initiation, growth, transfer, and termination of the chain) with both crosslinking and scission and the latter is confirmed to be the main process. The antioxidants 1010 as scavenger of free radicals and 168 acting decomposition of hydroperoxides were used to improve the oxidation aging resistance of SBS copolymer. It has been found that synergic effect of 1010 and 168 may be the best in practice and 0.2 wt % 1010 + 0.4 wt % 168 can effectively prevent SBS from the thermal oxidation at certain temperature. Furthermore, the aging resistance of the SBS‐modified asphalt was improved by addition of complex antioxidants. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The free‐radical polymerization kinetics of diethylene glycol bisallyl carbonate in bulk were investigated with Fourier transform infrared and Fourier transform Raman techniques in a wide temperature range of 50–140°C with four different peroxide initiators. In addition, the ratios of the degradative kinetic rate constant to the propagation rate constant under different reaction conditions were obtained from molecular weight measurements under various reaction conditions. The ratio of the chemically controlled termination and propagation rate constants of the polymerization system were obtained with the initial rates of polymerization and the number‐average molecular weight data, which were between 8.22 × 10?5 and 1.47 × 10?3 L mol?1 s?1. The initiator efficiencies were evaluated with special experiments at low initiator concentrations with the theory of dead‐end polymerization. The computed conversions from the developed kinetic model were in good agreement with the conversion and molecular weight measured data. The values of the diffusion‐controlled propagation and termination rate constants, with clear and physical meaning, were the only two parameters obtained from the developed kinetic model fitting the measured conversion points. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 345–357, 2005  相似文献   

16.
The polymerization kinetics of Fischer‐Tropsch reactions on a cobalt‐based catalyst was studied. A kinetic model was developed based on the alkyl and alkenyl mechanisms for hydrocarbon chain propagation that may occur simultaneously in the Fischer‐Tropsch synthesis. The kinetic model comprised initiation of hydrocarbon chains, propagation, termination to paraffin and olefin and readsorption of olefin. The proposed model was validated by F‐test and proved valid at a confidence level of 95 %.  相似文献   

17.
A comprehensive mathematical model is developed for “living” free‐radical polymerization carried out in tank reactors and provides a tool for the study of process development and design issues. The model is validated using experimental data for nitroxide‐mediated styrene polymerization and atom transfer radical copolymerization of styrene and n‐butyl acrylate. Simulations show that the presence of reversible capping reactions between growing and dormant polymer chains should boost initiation efficiency when using free nitroxide in conjunction with conventional initiator and also increase the effectiveness of thermal initiation. A study shows the effects of the value of the capping equilibrium constant and capping reaction rate constants for both nitroxide‐mediated styrene polymerization (using alkoxyamine as polymer chain seeds) and atom transfer radical polymerization of n‐butyl acrylate (using methyl 2‐bromopropionate as chain extension seeds). Also the effect of introducing additional conventional initiator into atom transfer radical polymerization of n‐butyl acrylate is studied. It is found that the characteristics of long chain growth are determined by the fast exchange of radicals between growing and dormant polymer chains. Polymerization results in batch, semibatch, and a series of continuous tank reactors are analyzed. The simulations also show that a semibatch reactor is most flexible for the preparation of polymers with controlled architecture. For continuous tank reactors, the residence time distribution has a significant effect on the development of chain architecture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1630–1662, 2002  相似文献   

18.
Lipid oxidation is a complex phenomenon involving free radicals which are highly reactive molecular species. The life-time of these radical species is extremely short and their detection is therefore difficult. Several electron spin resonance (ESR) spectroscopy methodologies make it possible to identify, quantify and measure the reactivity of radical species formed during oxidation–reduction reactions. In this study we took advantage of the specificity of ESR spectroscopy to detect radical compounds in order to determine the rate constants of hydroperoxide degradation, a key reaction involved in lipid oxidation. The interaction of 5-doxyl stearic acid and lipid-derived radicals was studied by following the intensity of ESR spectra. A kinetic model was developed to simulate data analysis obtained by ESR and values of rate constants for hydroperoxide degradation were determined at 100 and 110 °C. This quantitative approach of ESR spectroscopy has produced useful information about new rate estimates for hydroperoxide degradation in edible oils.  相似文献   

19.
A kinetic analysis was performed to evaluate the antioxidant behavior of α‐ and γ‐to‐copherols (5—2000 ppm) in purified triacylglycerols obtained from sunflower oil (TGSO) and soybean oil (TGSBO) at 100 °C. Different kinetic parameters were determined, viz. the stabilization factor as a measure of effectiveness, the oxidation rate ratio as a measure of strength, and the antioxidant activity which combines the other two parameters. In the low concentration range (up to 400 ppm in TGSBO and up to 700 ppm in TGSO) α‐tocopherol was a more active antioxidant than γ‐tocopherol whereas the latter was more active at higher concentrations. It has been found that the different activity of the tocopherols is not due to their participation in chain initiation reactions, but that the loss of antioxidant activity at high tocopherol concentrations is due to their consumption in side reactions. The rates of these reactions are higher in TGSBO than in TGSO. Both α‐tocopherol itself and its radicals participated more readily in side reactions than γ‐tocopherol and its radicals. Both α‐ and γ‐tocopherol reduce lipid hydroperoxides, thus generating alkoxyl radicals which are able to amplify the rate of lipid oxidation by participating in chain propagation reactions.  相似文献   

20.
A chemical kinetic model for i‐butane and n‐butane catalytic cracking over synthesized HZSM‐5 zeolite, with SiO2/Al2O3 = 484, and in a plug flow reactor under various operating conditions, has been developed. To estimate the kinetic parameters of catalytic cracking reactions of i‐butane and n‐butane, a lump kinetic model consisting of six reaction steps and five lumped components is proposed. This kinetic model is based on mechanistic aspects of catalytic cracking of paraffins into olefins. Furthermore, our model takes into account the effects of both protolytic and bimolecular mechanisms. The Levenberg–Marquardt algorithm was used to estimate kinetic parameters. Results from statistical F‐tests indicate that the kinetic models and the proposed model predictions are in satisfactory agreement with the experimental data obtained for both paraffin reactants. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2456–2465, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号