共查询到20条相似文献,搜索用时 0 毫秒
1.
Xiuyi Yan Fangming Jin Kazuyuki Tohji Atsushi Kishita Heiji Enomoto 《American Institute of Chemical Engineers》2010,56(10):2727-2733
We investigated the hydrothermal conversion of the carbohydrates including glucose, cellulose, and starch to lactic acid using NaOH and Ca(OH)2 as alkaline catalysts. Both catalysts significantly promoted the lactic acid formation. The highest yield of lactic acid from glucose was 27% with 2.5 M NaOH and 20% with 0.32 M Ca(OH)2 at 300°C for 60 s. The lactic acid yields from cellulose and starch were comparable with the yield from glucose with 0.32 M Ca(OH)2 at 300°C, but the reaction time in the case of cellulose was 90 s. The mechanism of lactic acid formation from glucose was discussed by identifying the intermediate products. Lactic acid may be formed via the formation of aldoses of two to four carbons including aldose of three carbons, which are all formed by reverse aldol condensation and double bond rule of hexose. This implies that carbon–carbon cleavage occurs at not only C3? C4 but also at C2? C3. © 2010 American Institute of Chemical Engineers AIChE J, 2010 相似文献
2.
Camilo A. Ramírez‐López José R. Ochoa‐Gómez Silvia Gil‐Río Olga Gómez‐Jiménez‐Aberasturi Jesús Torrecilla‐Soria 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2011,86(6):867-874
BACKGROUND: Currently, the ‘green chemistry’ philosophy is being increasingly adopted by the chemical industry and, therefore, new production procedures of valuable chemicals from biomass‐derived raw materials are being sought. In this work, the synthesis of lactic acid from sorbitol under alkaline hydrothermal conditions is investigated by analyzing the influence on conversions and yields of temperature, NaOH/sorbitol molar ratio (MR), initial sorbitol concentration (SC) and reaction time. RESULTS: A 100% sorbitol conversion and a maximum 39.5% yield of lactic acid on a carbon basis are obtained at 280 °C, 50 min, 1.0 mol L?1 SC and 2.0 MR. Glyceraldehyde was the only identified intermediate while formic acid, acrylic acid, acetic acid, oxalic acid and sodium carbonate were identified as over‐oxidation products, all of them in very low yields with the exception of formic acid (16% yield at a MR of 4 and 280 °C). Several plausible conversion routes of sorbitol involving dehydrations, keto‐enol tautomerisms, reverse aldol condensations, aldol condensations, Cannizzaro reactions and oxidations are proposed. CONCLUSIONS: Considering the high number of parallel conversion routes as a consequence of high functionality of sorbitol, the 39.5% lactic acid yield obtained is a good result. Total carbon mass in all identified products only justifies, at most, 50% of that in sorbitol due to the coexistence of several conversion routes resulting in a large number of products other than lactic acid. Copyright © 2011 Society of Chemical Industry 相似文献
3.
Hydro‐liquefaction of a woody biomass (birch powder) in sub‐/super‐critical methanol without and with catalysts was investigated with an autoclave reactor at temperatures of 473–673 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. The liquid products were separated into water soluble oil and heavy oil (as bio‐crude) by extraction with water and acetone. Without catalyst, the yields of heavy oil and water soluble oil were in the ranges of 2.4–25.5 wt % and 1.2–17.0 wt %, respectively, depending strongly on reaction temperature, reaction time, and initial pressure of hydrogen. The optimum temperature for the production of heavy oil and water soluble oil was found to be at around 623 K, whereas a longer residence time and a lower initial H2 pressure were found to be favorite conditions for the oil production. Addition of a basic catalyst, such as NaOH, K2CO3, and Rb2CO3, could significantly promote biomass conversion and increase yields of oily products in the treatments at temperatures less than 573 K. The yield of heavy oil attained about 30 wt % for the liquefaction operation in the presence of 5 wt % Rb2CO3 at 573 K and 2 MPa of H2 for 60 min. The obtained heavy oil products consisted of a high concentration of phenol derivatives, esters, and benzene derivatives, and they also contained a higher concentration of carbon, a much lower concentration of oxygen, and a significantly increased heating value (>30 MJ/kg) when compared with the raw woody biomass. © 2009 American Institute of Chemical Engineers AIChE J, 2009 相似文献
4.
从生物量生产丙烯酸的研究和开发进展 总被引:6,自引:0,他引:6
1 INTRODUCTION Energy resources are divided into two categories: renewable and non-renewable. The fossil energy re- sources, such as petroleum, coal, natural gas and nu- clear energy, are non-renewable, whereas solar energy, hydraulic energy, wind power as well as biomass, etc., are renewable. Nowadays, worldwide efforts to reduce atmospheric CO2 emissions and to overcome the shortage and sharp price rise of fossil energy resources, especially petroleum, simultaneously trigger research on… 相似文献
5.
6.
乙酰丙酸有望成为一个基于生物质资源的新平台化合物,其制备过程中涉及高温高压水.实验测定了压力10 MPa、温度220~280 ℃内乙酰丙酸在近临界水中的稳定性.实验结果表明:近临界水中乙酰丙酸较稳定,在280 ℃、反应32 h下,乙酰丙酸的转化率仅为7.0%.乙酰丙酸降解反应为一级反应,分解反应的活化能为28.04 kJ/mol. 相似文献
7.
Yuanqing Wang Fangming Jin Mitsuru Sasaki Wahyudiono Fengwen Wang Zhenzi Jing Motonobu Goto 《American Institute of Chemical Engineers》2013,59(6):2096-2104
Biomass as a source for chemicals production attracts growing attention due to the decreasing storage of fossil fuels and global warming caused by emission of CO2. In this study, conversion of glucose with copper oxide (CuO) was studied under alkaline hydrothermal conditions using a batch reactor and continuous flow reactor. CuO, as an oxidant, greatly improves the yields of lactic acid (LA) and acetic acid from glucose and was reduced into Cu2O and Cu. Selective production of LA with the highest yield of 59% and acetic acid with the highest yield of 32% can be achieved by controlling reaction time, temperature, and addition of CuO. A possible mechanism of conversion of glucose with CuO was proposed. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2096–2104, 2013 相似文献
8.
Ya‐lei Zhang Min Zhang Zheng Shen Jing‐fei Zhou Xue‐fei Zhou 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2013,88(5):829-833
BACKGROUND: Glycerine, a main by‐product of the biodiesel manufacturing process, has potential to be an important biorefinery feedstock with the rapid increase in biodiesel production all over the world. Hydrothermal experiments with glycerine were carried out at 250 °C using H2O2 as an oxidant. RESULTS: Glycerine was converted into formic acid with a yield of 31.0% based on the starting mass of carbon in glycerine. A possible oxidation pathway for the formation of formic acid from glycerine is proposed. In the proposed pathway, glycerine may first be oxidised and then decomposed into formic acid and oxalic acid. Oxalic acid was indirectly attributed to the increase of formic acid production from glycerine, but it instead acts as a retardant to prevent further oxidation of formic acid. However, when an alkali was added to the experimental conditions, the yield of formic acid was not greatly improved, reaching only 34.7%. CONCLUSION: The present work should help to facilitate further studies to develop a new green process for the production of formic acid from renewable biomass. © 2012 Society of Chemical Industry 相似文献
9.
模拟自然加快碳循环:水热转化生物质为高附加值产品 总被引:1,自引:0,他引:1
综述了作者所在科研组利用水热技术转化生物质成高附加值化工原料的一些最新进展。着重介绍了利用碳水化合物、木质纤维素、纤维素生物质以及生物柴油的副产物甘油产各种有机酸的研究进展,讨论了水热转化的机理和在水热转化中天然碳水化合物各组分之间的相互影响。最后介绍了中试规模连续水热反应系统利用植物源生物质生产乙酸的进展情况。 相似文献
10.
Onur Ömer Söǧüt Mesut Akgün 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2010,85(5):640-647
BACKGROUND: Supercritical water oxidation (SCWO) of dyehouse waste‐water containing several organic pollutants has been studied. The removal of these organic components with unknown proportions is considered in terms of total organic carbon concentration (TOC), with an initial value of 856.9 mg L?1. Oxidation reactions were performed using diluted hydrogen peroxide. The reaction conditions ranged between temperatures of 400–600 °C and residence times of 8–16 s under 25 MPa of pressure. RESULTS: TOC removal efficiencies using SCWO and hydrothermal decomposition were between 92.0 and 100% and 6.6 and 93.8%, respectively. An overall reaction rate, which consists of hydrothermal decomposition and the oxidation reaction, was determined for the hydrothermal decomposition of the waste‐water with an activation energy of 104.12 ( ± 2.6) kJ mol?1 and a pre‐exponential factor of 1.59( ± 0.5) × 105 s?1. The oxidation reaction rate orders for the TOC and the oxidant were 1.169 ( ± 0.3) and 0.075 ( ± 0.04) with activation energies of 18.194 ( ± 1.09) kJ mol?1, and pre‐exponential factor of 5.181 ( ± 1.3) L0.244 mmol?0.244 s?1 at the 95% confidence level. CONCLUSION: Results demonstrate that the SCWO process decreased TOC content by up to 100% in residence times between 8 and 16 s under various reaction conditions. The treatment efficiency increased remarkably with increasing temperature and the presence of excess oxygen in the reaction medium. Color of the waste‐water was removed completely at temperatures of 450 °C and above. Copyright © 2010 Society of Chemical Industry 相似文献
11.
12.
Sarah Alamolhoda Gerardo Vitale Azfar Hassan Nashaat N. Nassar Pedro Pereira Almao 《加拿大化工杂志》2019,97(1):140-151
13.
14.
Lignocellulosic biomass (Moso Bamboo, Chinese tallow tree wood, switchgrass, and pine wood) was subjected to a novel delignification process using microwave energy in a binary glycerol/methanol solvent. The physicochemical properties of the recovered lignin were analyzed prior to its application in the fabrication of polylactic acid (PLA)–lignin composites. The results showed that the samples had a high Klason lignin content (>75%) and retained their natural structure. Thermogravimetric analysis revealed that the recovered lignin exhibited a different thermal decomposition pattern from that of commercial lignins. All the recovered lignins had good solubility in common organic solvents (acetone, 1,4‐dioxane, THF, DMSO, and ethanol/water) and 1 mol/L NaOH solution. The addition of lignin into the PLA matrix resulted in the improvement in tensile properties of PLA–lignin composites. PLA films with low lignin content had good UV light‐resistant properties, indicating that the recovered lignin has potential in packaging of light‐sensitive products. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42635. 相似文献
15.
Yang Hoon Kim Seung‐Hyeon Moon 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2001,76(2):169-178
One‐stage electrodialysis (ED) for lactic acid recovery with two‐ and three‐compartment water‐splitting ED (WSED) was investigated using various ion‐exchange membranes in order to overcome the inefficiency of two‐stage ED, which consists of desalting ED for recovery and partial purification and subsequent WSED for acidification. The two‐compartment WSED had a low current efficiency and high energy consumption in spite of a simple stack configuration. A three‐compartment WSED successfully converted sodium lactate in the fermentation broth into lactic acid and sodium hydroxide with average yields of 96% and 93%, respectively. In relation to lactic acid purification, of the membranes tested in this study, the highest glucose rejection, 98.3%, was achieved using a PC 100D membrane. The CMS membrane rejected magnesium and calcium at levels as high as 81.7% and 78.5%, respectively. We concluded that the three‐compartment WSED with properly chosen membranes, enabled lactic acid to be recovered directly from the fermentation broth. © 2001 Society of Chemical Industry 相似文献
16.
17.
18.
This research considers a two‐step chain extension reaction in the presence of two chain extenders, Joncryl and Pyromellitic dianhydride (PMDA), as a solution for poor melt properties of poly (lactic acid) (PLA). The aim of adding PMDA is to increase the carboxyl groups via the anhydride ring‐opening reaction so that the reaction between PLA and Joncryl could be facilitated since the reactivity between the epoxy and carboxyl group is more than epoxy and hydroxyl group. The reactions are confirmed by measuring the acid value, and a two‐step reaction mechanism is suggested. Shear and elongational rheological properties of the samples are investigated; furthermore, gel permeation chromatography analyses and tensile tests are exploited for studying the molecular weight and tensile properties, respectively. The results show that the chain extension reactions lead to an increase in the storage modulus, complex viscosity, and molecular weight. Also, the PLA chains which are extended utilizing both chain extenders simultaneously evince a synergistic improvement in the shear and elongational rheological properties due to longer segments between branching points on the structure. 相似文献
19.
20.
Hydroxyl‐terminated poly(lactic acid) prepolymer (LA prepolymer) were prepared via L ‐lactic acid as monomer, 1,4‐butanediol as blocking agent and Sn(II) octoate as catalyst by direct melt polymerization. Then the LA prepolymer was blended with starch followed by in situ chain extending reaction using different content of TDI as chain extender, producing the high molecular weight of poly(ester urethane) in the blends. The LA prepolymer/starch‐TDI blends were characterized by GPC, 1H‐NMR, SEM, DSC, tensile strength testing, and water resistance. The SEM results of cross‐section show that, compared with the simple PLA/starch blends, almost the starch granules were completely covered by ploy(ester urethane) in the LA prepolymer/starch‐TDI blends system. In comparison to the simple PLA/starch blends, the mechanical properties of LA prepolymer/starch‐TDI blends were increased, such as tensile strength increasing from 18.6 ± 3.8 to 44.2 ± 6.2 Mpa, tensile modulus increasing from 510 ± 62 to 1,850 ± 125 Mpa and elongation at break increasing from 1.8 ± 0.4 to 4.0 ± 0.5 %, respectively. This is attributed to high weight of poly (ester urethane) was formed via in situ reaction of the end of hydroxyl (LA prepolymer) and isocyanate groups and the starch granules were easily covered by ploy(ether urethane) via in situ polymerization in the blends. Moreover, covalent linkage was formed between the two phases interfaces. As a result, the interfacial adhesion was enhance and improved the mechanical property. In addition, the water resistance of LA prepolymer/starch‐TDI blends was much better that of the simple PLA/starch blends. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers 相似文献