首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surface flame retarded jute/polypropylene composites (J/P/A) were prepared via a modified strategy: the mixture of PP and APP powder was spread over the surface of jute/PP nonwoven felts, and then transformed into the flame retarded layer by the hot pressing process. The flame retardancy and thermal properties of composites were analyzed by limit oxygen index (LOI), horizontal burning rate (HBR), thermogravimetric analyses (TGA), and differential scanning calorimetry (DSC). We demonstrated that the flame retardancy and mechanical properties of composites was significantly improved compared with those obtained by presoaking the nonwoven fiber felts in flame retardant (FR) solvent before hot pressing. The mechanism of thermal degradation of jute fiber and flame‐retardant mechanism of composites were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and scanning electron microscope (SEM). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43889.  相似文献   

2.
Phenolic foams reinforced with pristine and functionalized multiwalled carbon nanotubes (MWCNTs) were fabricated to develop fire‐resistant materials with improved mechanical properties. The influences of the contents of carboxyl multi‐walled carbon nanotubes (MWCNTs‐COOH) and of MWCNTs types on the compressive properties of the composite foams were investigated. The microstructure and detailed failure behavior of MWCNTs/phenolic composite foams were studied using scanning electron microscopy (SEM) and in situ quasistatic compression inside SEM, respectively. In addition, thermal performances were evaluated by thermogravimetric analysis (TGA) and vertical burning method. It is found that as heterogeneous nucleation agents, MWCNTs increase cell density and decrease cell size of the produced foams, and that as reinforcements located in cell walls, MWCNTs impart high strength and stiffness to brittle foams. Moreover, MWCNTs reinforced foams have higher thermal stability than raw foams and exhibit similar excellent resistance to flame, confirming the effectiveness of MWCNTs as stabilizers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1479–1488, 2013  相似文献   

3.
Intumescent‐flame‐retarded polypropylene (PP‐IFR) composites were prepared by the incorporation of methyl hydrogen siloxane treated ammonium polyphosphate and dipentaerythritol in a twin‐screw extruder. The effects of zeolite (Z), multiwalled carbon nanotubes (CNTs), and maleic anhydride grafted polypropylene on the flame retardancy, mechanical properties, and thermal stability of PP‐IFR were investigated. The addition of Z and CNT promoted the flame retardancy of PP‐IFR, and the highest limited oxygen index was 35.6%, obtained on PP‐M‐IFR‐2–Z, for which the heat‐release rate, total heat release, and smoke production rate based on cone calorimetry analyses decreased by 45.0, 51.0, and 66.3%, respectively, in comparison with those values of the PP‐IFR composites. Additionally, scanning electron microscopy analyses showed that there was a good interface interaction between the polypropylene matrix and additives. The flexural, tensile, and impact strengths of the PP‐IFR composites were improved significantly with the incorporation of CNT. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42875.  相似文献   

4.
Ammonium polyphosphate (APP) is an effective phosphorus-containing flame retardant. But APP also has excellent hygroscopic capacity and decreases the mechanical property of composite. The aim of the study was to microencapsulate APP with polymethyl methacrylate (PMMA) to prepare microencapsulated ammonium polyphosphate (PMAPP) in order to eliminate the harmful effects caused by the mechanical property of composite. The microcapsules are characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and hydroscopicity test and observed by scanning electron microscopy (SEM). Fire hazard of rigid polyurethane foam (RPUF) is evaluated using a cone calorimeter and limited oxygen index test. The mechanical property of RPUF is studied by compressive strength test. The results show that APP has been microencapsulated by PMMA successfully and the shell does not decrease the beneficial effect of APP on fire hazard of RPUF. Furthermore, the shell also reduces the damage of APP on the mechanical property of composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48307.  相似文献   

5.
A liquid silicon/phosphorus containing flame retardant (DOPO–TVS) was synthesized with 9,10‐dihydro‐9‐oxa‐10‐phosphapheanthrene‐10‐oxid (DOPO) and triethoxyvinylsilane (TVS). Meanwhile, a modified epoxy resin (IPTS–EP) was prepared by grafting isocyanate propyl triethoxysilane (IPTS) to the side chain of bisphenol A epoxy resin (EP) through radical polymerization. Finally, the flame retardant (DOPO–TVS) was incorporated into the modified epoxy resin (IPTS–EP) through sol–gel reaction between the ethyoxyl of the two intermediates to obtain the silicon/phosphorus containing epoxy resin. The molecular structures of DOPO–TVS, IPTS–EP and the final modified epoxy resin were confirmed by FTIR spectra and 1H‐NMR, 31P‐NMR. Thermogravimetric analysis (TGA), differential scanning calorimetry, and limiting oxygen index were conducted to explore the thermal properties and flame retardancy of the synthesized epoxy resin. The thermal behavior and flame retardancy were improved. After heating to 600°C in a tube furnace, the char residue of the modified resin containing 10 wt % DOPO–TVS displayed more stable feature compared to that of pure EP, which was observed both by visual inspection and scanning electron microscope (SEM). Moreover, the mechanical performance testing results exhibited the modified epoxy resins possessed elevated tensile properties and fracture toughness which is supported by SEM observation of the tensile fracture section. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42788.  相似文献   

6.
A series of polyarylates containing phosphorus (pho‐PARs) were synthesized from bisphenol A with different molar ratios of bis‐(4‐carboxyphenyl) phenyl phosphine oxide (BCPPO) to terephthalic acid (TPA). When the contents of BCPPO are in the range of 0.4–1.0, the pho‐PARs are readily soluble in a wide range of organic solvents and have the glass transition temperatures of 243.0–260.4°C. The initial degradation temperatures of these pho‐PARs are all above 450°C and their char yields at 800°C under nitrogen atmosphere are in the range of 28.7–33.0%, suggesting they have excellent thermal stability. The results of TG‐FTIR and FT‐IR show the introduction of BCPPO change the decomposition model of the pho‐PARs. The limiting oxygen indexes are at a range of 30.7–34.5%, which suggests that the pho‐PARs are a kind of excellent inherent flame retardant materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3521–3529, 2013  相似文献   

7.
The effects of three commercial aryl phosphate flame retardants (FRs; bisphenol A bis(diphenyl diphosphate) [BDP], triphenyl phosphate (TPP), and a proprietary oligomeric phosphate ester (OPE)) and a compatibilizer (methacrylate-butadiene-styrene copolymer [MBS]) on the thermal and mechanical properties of FR-recycled PC/acrylonitrile-butadiene-styrene copolymer (r-PC/r-ABS) blends are investigated. The addition of FRs to r-PC/r-ABS blends increases the storage, tensile, and flexural moduli, indicating a reinforcing effect. However, at elevated temperatures, FRs reduce the glass transition temperature and act as plasticizers. The thermal stability of r-PC/r-ABS/FR blends at 10% mass loss increases in the following order: r-PC/r-ABS/TPP < r-PC/r-ABS/BDP < r-PC/r-ABS/OPE < r-PC/r-ABS/OPE/MBS. Kinetics of thermal decomposition of the FR r-PC/r-ABS blends is studied calculating the thermal decomposition activation energies by the Flynn–Wall–Ozawa method. Scanning electron microscopy shows that r-PC/r-ABS/OPE blend is only partly miscible, while homogeneous structure is formed in the r-PC/r-ABS/OPE/MBS blend, which is supported by its good mechanical and thermal properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48377.  相似文献   

8.
A reactive, intumescent, halogen‐free flame retardant, 2‐({9‐[(4,6‐diamino‐1,3,5‐triazin‐2‐yl)amino]‐3,9‐dioxido‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5]undecan‐3‐yl}oxy)ethyl methacrylate (EADP), was synthesized through a simple three‐step reaction from phosphorus oxychloride, pentaerythritol, hydroxyethyl methacrylate, and melamine. EADP exhibited excellent thermal stability and char‐forming ability, as revealed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The TGA results show that the temperature at 5% weight loss was 297.8°C and the char yield at 700°C was 51.75%. SEM observation revealed that the char showed a continuous and compact surface and a cellular inner structure with different sizes. Composite of polypropylene (PP) with a 25 wt % addition of EADP (PP/EADP25) passed the UL‐94 V‐0 rating and showed a limiting oxygen index value of 31.5. Compared with those of neat PP, the flexural strength and modulus values of PP/EADP25 were somewhat improved, the tensile strength was basically unchanged, and the notched Izod impact strength was slightly decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40054.  相似文献   

9.
In this work, multiwalled carbon nanotube (MWCNT)-modified magnesium oxysulfate whisker (MOSw) (MOSw-MWCNT) is successfully synthesized via a facial hydrothermal method. MWCNT is bonded on the surface of MOSw via a bidentate bridging mode of the carboxylate ligation without changing their crystal structures. Then MOSw-MWCNT is incorporated into polypropylene (PP) matrix to prepare series of PP/MOSw-MWCNT composites via melt blending. Cone calorimetry test, horizontal and vertical test, and limit oxygen index (LOI) results all show a significant synergistic effect of MOSw and MWCNT on flame-retardant PP. PP/7MOSw-3MWCNT composite exhibits the lowest peak heat release rate, total heat release, peak smoke production rate, total smoke production, and burning speed of 332.3 kW/m2, 87.4 MJ/m2, 0.0212 m2/s, 47.7 m2 and 23.2 mm/min, respectively. The LOI value of PP/7MOSw-3MWCNT composite is increased to 23.1% from 18.0% of neat PP. The scanning electron microscopy and Raman spectra of residue char indicate that the degree of graphitization and compactness of the residue char are increased with the amount of MWCNT. The introduction of MOSw and MWCNT both improves the thermal stability of PP matrix, but the excess MWCNT leads to the decomposition of the unstable residue char since its excellent thermal conductivity.  相似文献   

10.
A comparative study was performed of fly ash and nano‐CaCO3 as fillers in polybutadiene rubber with 0, 4, 8 and 12% fly ash and nano‐CaCO3. Uniform sheets were prepared of well‐compounded rubber. Nano‐CaCO3 was synthesized by in situ deposition. The CaCO3 nanoparticles as reinforcing agents improved the tensile strength more than 50% than fly ash, and the toughness and hardness also increased significantly. Up to a 75% reduction in flammability and a 100% improvement in the tear strength were observed with nano‐CaCO3.© 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 6–9, 2005  相似文献   

11.
Silica (SiO2) nanohybrid expandable graphite (nEG) particles fabricated through one-step method are used as an efficient flame retardant for polypropylene (PP)/polyamide 6 (PA6) blends. The effect of nEG on the flammability, thermal stability, crystallization behaviors, and mechanical properties of PP/PA6 composites is investigated by using limit oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared, scanning electron microscopy, and mechanical tests. Compared with pure expandable graphite (EG), nEG improves the flame retardancy of composites. The results of LOI show that LOI of PP/PA6/nEG10 and PP/PA6/nEG15 composites are 26.0% and 27.2%, respectively. But the LOI values of PP/PA6/EG10 and PP/PA6/EG15 composites are 25.7% and 26.9%, respectively. The UL-94 test results show that PP/PA6/nEG10 composites reach V-1 level when the nEG content is only 10%. However, the PP/PA6 composites with 10% EG does not pass the UL-94 test. In addition, PP/PA6 composites with 15% nEG can reach V-0 level. The CCT results further show that nEG has a higher flame-retardant efficiency than pure EG for PP/PA6 blends. The thermal stability of PP/PA6/nEG composites is better than that of PP/PA6/EG composites. The mechanical property tests indicate that nEG is more conducive to maintain the tensile and impact strengths of PP/PA6 blends than EG due to the enhanced compatibility and interfacial adhesion.  相似文献   

12.
Flame‐retardant methyl vinyl silicone rubber (MVMQ)/montmorillonite nanocomposites were prepared by solution intercalation method, using magnesium hydroxide (MH) and red phosphorus (RP) as synergistic flame‐retardant additives, and aero silica (SiO2) as synergistic reinforcement filler. The morphologies of the flame‐retardant MVMQ/montmorillonite nanocomposites were characterized by environmental scanning electron microscopy (ESEM), and the interlayer spacings were determined by small‐angle X‐ray scattering (SAXS). In addition to mechanical measurements and limited oxygen index (LOI) test, thermal properties were tested by thermogravimetric analysis (TGA). The decomposition temperature of the nanocomposite that contained 1 wt % montmorillonite can be higher (129°C) than that of MVMQ as basal polymer matrix when 5% weight loss was selected as measuring point. This kind of silicone rubber nanocomposite is a promising flame‐retardant polymeric material. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3275–3280, 2006  相似文献   

13.
A copolymer of alkali lignin and polyacrylamide was fabricated by graft copolymerization, and further chelated with Fe3+. The obtained lignin chelate with star structure was used as synergistic agent and catalyst with the incorporation of intumescent flame retardants (IFRs) to prepare flame-retarded poly (butylene succinate) (PBS) composites. The replacement of IFR by lignin chelate favors the enhancement of mechanical performance, resulting in the synchronous improvement of tensile and flexural properties. Compared with the specimen used 25 wt% IFRs (75P/25I), the tensile strength, flexural strength, and modulus of specimen prepared by 23 wt% IFRs and 2 wt% lignin chelate (75P/23I/2LC) exhibited significant increased. A synergistic effect between IFR and lignin chelate occurred when they were combined with an appropriate ratio. When IFR and lignin chelate loadings were 24 and 1 wt%, respectively (75P/24I/1 LC), the limited oxygen index (LOI) value of 36.2% and UL-94 V0 rate of composite could be achieved. Compared with 75P/25I, the char residue mass of 75P/24I/1 LC increased by 35.7%. Moreover, SEM images indicated that a more compact, smooth, and continuous char layer of 75P/24I/1 LC could be formed during combustion. The peak heat release rate (pHRR) and total heat release (THR) of 75P/24I/1 LC decreased by 58.9% and 9.9% compared with PBS, also decreased by 10.3% and 4.8% compared with 75P/25I, respectively. TGIR and FTIR analysis also indicated that lignin chelate exhibited an excellent synergistic effect with IFRs, and gave PBS a good flame retardancy by making contribution to char-formation and gas-phase flame retardancy. This study provides an alternative way for the application of natural polymers such as lignin in flame retardant materials.  相似文献   

14.
Spherical silica nanoparticles with 20 and 100 nm diameters and organic‐template layered silica nanoparticles synthesized by the sol‐gel method were melt blended with a polypropylene (PP) matrix in order to study and quantify their effect on the oxygen and water vapor permeability and mechanical and thermal behavior. With regard to barrier properties, the spherical nanoparticles barely increased the oxygen permeability at low loads (≤10 wt%); meanwhile the layered nanoparticles dramatically increased it even at low loading (<5 wt%) probably due to the percolation effect. The changes in water vapor permeability were similar to those in oxygen permeability. The repulsive interaction between nanoparticles and PP forms interconnecting voids where the gas permeates. Tensile stress–strain tests showed that the composites present up to a 56% increase in the elastic modulus with spherical nanoparticles at 20 wt%, while layered nanoparticles show a decrease probably due to agglomerations and voids. Thermogravimetric analysis under inert conditions showed that the nanoparticles improved the PP thermal degradation process through the adsorption of volatile compounds on their surface, where the smaller spherical nanoparticles show the greatest stabilization. © 2015 Society of Chemical Industry  相似文献   

15.
Ammonium polyphosphate (APP)–polystyrene (PSt) core–shell microspheres (CSPs) were synthesized via in situ radical polymerization. The core–shell structure was confirmed by transmission electron microscope (TEM). The results of optical contact angle measurements demonstrated a significant improvement in hydrophobicity of the modified APP. The obtained APP–PSt CSPs were added into epoxy (EP) system with various loadings. Effects of CSP on flame retardancy, thermal properties, heat release rate (HRR), smoke production, and mechanical properties of EP/CSP composites were investigated by limiting oxygen index (LOI), UL‐94 tests, thermogravimetric analysis (TGA), cone calorimeter, and tensile test. LOI and UL‐94 indicated that CSP remarkably improved the flame retardancy of EP composites. TGA showed that the initial decomposition temperature and the maximum‐rate decomposition temperature decreased, whereas residue yields at high temperature increased with the incorporation of microspheres. Cone calorimetry gave evidence that HRR, peak release rate, average HRR, and smoke production rate of EP/CSP composites decreased significantly. The morphology of char residues suggested that CSP could effectively promote EP to form high‐quality char layer with compact outer surface and swollen inner structure. Tensile strength of EP was enhanced with the addition of CSP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40218.  相似文献   

16.
A novel phosphorus‐ and silicon‐containing polyurethane prepolymer (PSPUP) was synthesized by the chemical reaction of phenyl dichlorophosphate with hydroxy‐terminated polydimethylsiloxane (HTPDMS) and subsequently with toluene‐2,4‐diisocyanate. The structure of PSPUP was confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance. Afterward, a series of phenolic foams (PF) with different loadings of PSPUP toughening agent were prepared. The apparent density and scanning electron microscopy results showed that the addition of PSPUP can increase the apparent density of phenolic foam. The compressive, impact and friability test results showed that the incorporation of PSPUP into PF dramatically improved the compressive strength, impact strength, and reduced the pulverization ratio, indicating the excellent toughening effect of PSPUP. The limiting oxygen index of PSPUP modified phenolic foams remained a high value and the UL‐94 results showed all samples can pass V0 rating, indicating the modified foams still had good flame retardance. The thermal properties of the foams were investigated by thermogravimetric analysis under air atmosphere. Moreover, the thermal degradation behaviors of the PF and PSPUP/PF were investigated by real‐time Fourier transform infrared spectra. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
To effectively reduce the fire hazard of flexible polyvinyl chloride (PVC), this study explored the synthesis of perovskite-type copper hydroxystannate (CuSn(OH)6) microspheres by co-precipitation method. Then an organic–inorganic hybrid microsphere (CuSn(OH)6@PZS) with core-shell structure was fabricated by in situ coating with poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS). The results showed that CuSn(OH)6@PZS performs most significantly in reducing the total heat release, while the CuSn(OH)6 alone achieves the best smoke suppression effect. The limiting oxygen index (LOI) value of the PVC composites is improved from 29.0% to a maximum of 35.3%. During combustion, the peak heat release rate (PHRR) and total smoke production (TSP) decrease by a maximum of 50.8% and 44.9%, respectively. Significantly, the presence of the PZS coating also improves the interfacial compatibility with PVC. The mechanical properties were significantly improved and the elongation at break improving by 40.9%.  相似文献   

18.
Flame‐retardant polyamide 66 (PA66) was prepared by the polymerization between PA66 prepolymer and N‐benzoic acid (ethyl‐N‐benzoic acid formamide) phosphamide (NENP). Compared with the pure PA66, the flame‐retardant PA66 exhibited better thermal stability, as indicated by thermogravimetric analysis results. The limiting oxygen index was 28% and the UL‐94 test results of the flame‐retardant PA66 indicated a V‐0 rating when the content of the NENP prepolymer was 5 wt %. The flammability and flame‐retardant mechanism of PA66 were also studied with cone calorimetry and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, respectively. The mechanical properties results show that the flame‐retardant PA66 resin had favorable mechanical properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43538.  相似文献   

19.
In this work, flame‐retardant benzoxazine resins were prepared by copolymerization of bisphenol A based benzoxazine (BA‐a) and a phosphorous‐containing phenolic derivative (DOPO‐HPM). The curing behavior, thermal stability, and flame resistance of BA‐a/DOPO‐HPM composites were studied by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 test, and cone calorimeter. The DSC results indicated that DOPO‐HPM catalyzed the curing reaction because of its acidity. The TGA results revealed that the BA‐a/DOPO‐HPM thermosets possessed higher decomposition temperatures (T5%) and char yields than that of BA‐a. The combustion tests indicated that the flame retardant properties of BA‐a/DOPO‐HPM thermosets were enhanced. The BA‐a/DOPO‐HPM‐20 sample acquired the highest LOI value of 32.6% and UL94 V‐0 rating. Moreover, the average of heat release rate (av‐HRR), peak of heat release rate (pk‐HRR), average of effective heat of combustion (av‐EHC) and total heat release (THR) of BA‐a/DOPO‐HPM‐20 were decreased by 24.6%, 53.1%, 14.9%, and 22.1%, respectively, compared with BA‐a. The attractive performance of BA‐a/DOPO‐HPM blends was attributed to the molecular structure of DOPO‐HPM composed of DOPO group with excellent flame‐retardant effect and phenolic hydroxyl group with catalysis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43403.  相似文献   

20.
Basalt fabric (BF) was first treated with silane coupling agent KH550, modified basalt fabric (MBF) was obtained. Then MBF were molded with polypropylene (PP) matrix, and polypropylene/modified basalt fabrics (PP/MBF) composites were obtained. The influence of concentration and treating time of KH550 on MBF were characterized by hydrophilicity and lipophilicity. The tensile strength and morphology of basalt fabric were tested by single filament strength tester and scanning electron microscopy. The mechanical properties of composites were measured with electronic universal testing machine and impact testing machine, and the thermal properties were tested by thermogravimetric analysis and dynamic mechanical analysis. The results showed that the lipophilicity of MBF is improved significantly by KH550 while the tensile is nearly damaged. The mechanical properties of composites are larger than that of pure PP, among which the impact property was improved the most, showing 194.12% enhancement. The thermal stability and dynamic viscoelasticity were better than pure PP; furthermore, the concentration of KH550 virtually had no effect on the thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42504.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号