首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
Advanced multiphase steels offer a great potential for bodies‐in‐white through their combination of formability and achievable component strength levels. They are first choice for strength and crash‐relevant parts of challenging geometry. The intensive development of high‐strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels.  相似文献   

2.
Development of low‐temperature galvanizing and its application for corrosion protection of high‐strength steels Apart from reliability and quality, vehicle safety and cost efficiency are the decisive criteria for automobile manufacturers. Corrosion protection plays a decisive role because it increases the service life. The ultra‐high‐strength steels are materials which exhibit high lightweight potential as well as a very good energy absorption capacity because of their mechanical properties. In connection with the possibility of hot forming, they are predestined for the fabrication of complicated, load‐compatible shapes in the crash‐relevant frame and body construction. The application of these steel qualities has been carried out in structural parts which are protected from corrosion by a hot‐dip coat of FeAl7 – the so‐called Usibor. However, at the moment there is no ready‐for‐production solution for later corrosion protection of already hot‐formed parts. Therefore, a corrosion protection system on the basis of conventional low‐temperature galvanizing processes has been developed and utilized. First, the softening behavior of the highly‐resistant 22MnB5 substrate was analyzed. Afterwards, a galvanizing system was developed and applied. The corrosion protection coatings were characterized with regard to their structure and corrosion protection potential. As a result, a significant improvement of the corrosion behaviour has occurred.  相似文献   

3.
The influence of cooling conditions and immersion time on the adhesive power and the nature of the break of zinc coatings in according to EN ISO 1461 Zinc coatings are exposed external and internal mechanical stresses The object of our investigation was to determine the influence on the adhesion test results of the parameters originally determining the structure and the properties of the zinc coatings, such as • chemical composition of steels (Si/P‐content) • galvanizing conditions (zinc melt composition, immersion time) • cooling conditions The results of the adhesion test by the modified pull‐off‐test in according to ISO 4624, metallographic, scanning electron microscope and EDX analytical investigations and also layer thickness measurements make it possible to state that the structure and constitution of zinc coatings are especialy depended on the immersion time and cooling conditions. The reasons for this would be found. The best results for adhesive power of zinc coatings were received by cooling in cold water immediately after the hot dip galvanizing process. Relevant informations for the galvanizing industry are given.  相似文献   

4.
Liquid metal assisted cracking (LMAC) mainly occurs due to an unfavorable interaction of three factors: a susceptible material condition, presence of a liquid metal and sufficient tensile stress. Hot‐dip galvanizing of high‐strength bolts induces high thermal loads in bolts made of tempered steel in the presence of a zinc melt and thus, provides the boundary conditions for the above mentioned critical factors to interact. The focus of this study is on investigating thermally‐induced stresses in large diameter bolts and their impact on the formation of liquid metal assisted cracking (LMAC). In order to calculate the thermal loads in hot‐dip galvanizing, simulations were carried out regarding the thermo‐mechanical behavior of bolts during the hot‐dip galvanizing process. The simulations illustrate that cracks are most likely to occur in the first thread turn. This prediction is confirmed by experimental observations.  相似文献   

5.
含硅钢表面因素对热浸镀锌反应活性的影响   总被引:2,自引:1,他引:1  
综述了含硅钢材表面状态因素对热浸镀锌反应活性的影响,这些因素包括亚表面氧化、表面粗糙度、表面残余应力、表面晶粒位向及表面组织结构等.结果表明,对于热轧状态的含硅钢材,亚表面氧化和表面粗糙度对热浸镀锌有明显的影响.对于其它因素的影响,目前尚无统一看法.  相似文献   

6.
Hot‐dip galvanizing represents a very effective method to protect components against corrosion. During the hot‐dip galvanizing process, however, there is a risk that cracks form in the component. With an increase of the temperature of the zinc bath, the danger of crack formation also increases. This article describes a method to determine the start of the crack formation during hot‐dip galvanizing. With a few tests, this method allows to determine a stress‐strain limit (energy limit) below which no liquid metal assisted cracking (flüssigmetallinduzierte Rissbildung) can occur during the transient phase of hot‐dip galvanizing.  相似文献   

7.
The influence of Si and P contents in steels on the galvanizing behavior The galvanizing behavior of 40 structural steels in current use was investigated in relation to the complex influence of the Si/P content under conditions that are usual in the hot dip galvanizing industry (440/450/460 °C,5/10/15 min immersion time). The effect of P on the increase of coating thickness on steels with 0,01 to 0,40 % Si begins to be perceptible at > 0,020 % P. The influence of P increases with decreasing Si content of the steels and decreasing temperature of the melt. In steels with ≤ 0,12 % Si, an increased P content causes a shift of the thickness maxima in the temperature range from 440 to 450 °C, such as is otherwise typical of steels of 0,12 % to 0,28 % Si with < 0,020 % P. Zinc coatings on steels with the critical P/Si content (0 to 0,20 % Si/> 0,020 % P) as a rule are more unstable. With increased immersion time at the temperature stated above, floating away of the ξ phase into the zinc melt may occur. This could also be observed with Sandelin steels in the most critical Si range (0,07 to 0,10 %) with < 0,020 % P, with an immersion time of 15 min. It is possible to reduce the thickness of zinc coatings by adding small amounts of Al to the zinc melt (< 0,03 %). This effect of Al at a concentration that is below what is required for the known inhibitory action by the formation of an thin Fe2Al5-or Al-containing δ1 film on the steel surface is attributed to the instability of the ξ phase, a proportion of which floats away into the zinc melt.  相似文献   

8.
Mechanical properties of high strength steel welded joints strictly depend on the welding process, the filler material composition and the welding geometry. This study investigates the effects of using cored and solid welding wires and implementing various groove angles on the mechanical performance of weld joints which were fabricated employing the gas metal arc welding process. It was found that weld joints of low alloy, high strength steels using low alloy steel cored welding wires exhibited higher tensile strength than that of low alloy steel solid wire and chromium‐nickel steel bare welding wire when the method of gas metal arc welding is employed. The effect of groove angle on the strength and toughness of V‐groove and double V‐groove butt‐joints was investigated. V‐groove joints, with higher tensile strength than double V‐groove joints in the whole range of groove angles, were superior in toughness for small groove angles, but impact toughness values of both joints were comparable for large angles. The effect of heat input and cooling rate on the weld microstructure and weld strength was also investigated by performing thermal analysis employing the commercial software ANSYS. It was concluded that cooling rate and solidification growth rate determined the microstructure of the weld zone which had great consequences in regard to mechanical properties.  相似文献   

9.
使用锌-碳钢异材质丝柬电极技术,模拟并研究了锌/钢电偶腐蚀不同阶段的电位和电流密度的空间分布.结果表明,在锌丝与钢丝面积比为10:1的情况下,锌丝能给钢丝提供足够的阴极保护,且锌丝之间存在明显的电位、电流分布不均现象;钢丝之间也存在电化学参数分布不均现象,而且在受到保护的同时钢丝表面有氢析出.  相似文献   

10.
Novel fibre reinforced wires for power electronics The use of power electronics within the scope of mechatronic applications as well as the increasing integration of components lead to increased requirements concerning their mechanical and thermal reliability. Today contact making in power electronics is mostly done by aluminum thick wire bonding. This process is highly productive, however the life time of power electronic components is meanwhile predominantly limited by the durability of these wire bonds. The thermal mismatch between the wire material and the connected components is one cause. A new starting point, in order to improve the reliability, is the application of new fibre reinforced metal matrix composite (MMC) wires with increased reliability under thermo‐mechanical stress. In the context of a research project MMC bond wires of different material combinations and arrangements were manufactured. Aluminum wires with copper fiber reinforcement as well as Copper wires containing FeNi36 fibre reinforcement have successfully be drawn to a final diameter of 300 μm. The fibre reinforcements should reduce the coefficient of thermal expansion and improve the mechanical strength. By aluminium copper MMC the electrical conductivity is increased as well. Measurements of the produced MMC wires confirmed these expectations. The manufacturing of the MMC took place on the basis of wire material of different diameters. These wires were stacked in capsules in different arrangements and material combinations. Subsequently, the capsules were either hot‐isostatically pressed or directly extruded. In such a way produced composites have been manufactured by rotary swaging and wire drawing into bond wires and after that tested.  相似文献   

11.
丁丁  张磊  李峰  徐德录  常建伟  任玉锁 《材料导报》2017,31(Z1):514-518
对热镀锌内加热生产方法的特性进行了简述,从材料、制备工艺及性能角度综述了热镀锌内加热器保护套管用金属及合金材料、表面处理材料、无机材料的研究进展,并对碳化硅(SiC)复相陶瓷内加热器保护套管的研究方向提出了一些见解。  相似文献   

12.
On the hot strength of austenitic valve steels with a high nitrogen content Exhaust valves are made of CrMnNi steels with about 1 wt% of (C + N) and additions of W, Mo and Nb. Remelting under pressure allows to raise N and do without C. After solution annealing the formation of discontinuous N‐perlite during aging is suppressed by ∼ 1 wt% of Nb whereby the creep strength is increased. The size and distribution of continuously precipitated nitrides in N‐steels are finer than those of carbides and nitrides in (C + N)‐steels. Thus the creep strength of the former is superior at 700 °C. However, at 800 °C σ‐phase leads to a breakdown of creep strength. The reason is seen in a lower stability of N‐austenite as compared to (C + N)‐austenite, which shows a higher concentration of free electrons and more short range atomic ordering.  相似文献   

13.
This paper provides micromechanical bases to explain the time-dependent stress corrosion behaviour of high-strength prestressing steel wires. To this end, two eutectoid steels in the form of hot rolled bar and cold drawn wire were subjected to slow strain rate tests in aqueous environments in corrosive conditions corresponding to localized anodic dissolution and hydrogen assisted cracking. While a tensile crack in the hot rolled bar always propagates in mode I, in the cold drawn wire an initially mode I crack deviates significantly from its normal mode I growth plane and approaches the wire axis or cold drawing direction, thus producing a mixed mode propagation. In hydrogen assisted cracking the deviation happens just after the fatigue precrack, whereas in localized anodic dissolution the material is able to undergo mode I cracking before the deflection takes place. Therefore, a different time-dependent behaviour is observed in both steels and even in the same steel in distinct environmental conditions. An explanation of such behaviour can be found in the pearlitic microstructure of the steels. This microstructural arrangement is randomly oriented in the case of the hot rolled bar and markedly oriented in the wire axis direction in the case of the cold drawn wire. Thus both materials behave as composites at the microstructural level and their plated structure (oriented or not) would explain the different time-dependent behaviour in a corrosive environment.  相似文献   

14.
Microstructural and mechanical properties of laser welded sheets of magnesium AZ31‐HP with and without filler wires This paper describes Nd:YAG laser beam welding experiments carried out on rolled 2.5 mm thick magnesium sheet AZ31‐HP. For the butt welds in flat position, filler wires AZ31X and AZ61A‐F were used, diameter 1.2 mm. The microstructure and mechanical properties of the different laser beam welded joints were examined and compared with one another. The obtained results show that the laser beam welding of AZ31‐HP sheet is possible without hot crack formation, both without and with filler wires. The determined tensile strength, ductility, fracture toughness and microhardness of laser beam welded joints without filler wire were not effected by AZ31X nor AZ61A‐F. By use of these filler wires loss of zinc was minimized and the shape of weldments was optimized. The values of fracture strength, yield strength and microhardness of the joints and base material are quite similar. It is found that the ductility of the joints is lower than the base materials due to the heterogeneous microstructure of the fusion zones and geometrical notches of the weld seams. Both, weld and base material of AZ31‐HP, showed stable crack propagation. Furthermore, for base material slightly lower fracture toughness values CTOD than for the joints were determined.  相似文献   

15.
Stainless steel components exposed to mechanical stresses are subjected not only to corrosion, but to abrasive wear. There are several possibilities for enhancing the wear resistance of stainless steels; however, such processes are very often associated with a reduction in corrosion resistance. This paper presents an electron beam surface treatment technology to significantly improve the wear resistance of austenitic steels (e.g. X6CrNiMoTi17‐12‐2) and duplex steels (e.g. X2CrNiMoN22‐5‐3), without a negative influence on the corrosion behavior. Fe‐ and Co‐additive wires were deposited thermally by electron beam cladding. The cladding layers produced were free of defects such as cracks and pores, and were well metallurgical bonded to the base materials. Microstructural analysis, hardness measurements, wear tests and corrosion tests were carried out. The wear rate k was reduced by a factor of 100 compared to the base materials for electron beam cladding with Fe‐based wire and by a factor of 10 with Co‐based wire. Corrosion resistance was preserved for the Fe‐based cladding layers and slightly increased (by a factor of 3) for the Co‐based cladding layers.  相似文献   

16.
This paper provides a composites engineering approach to explain the stress corrosion behaviour of high-strength prestressing steel wires. To this end, two eutectoid steels in the form of hot rolled bar and cold drawn wire were subjected to slow strain rate tests in aqueous environments in corrosive conditions corresponding to localized anodic dissolution and hydrogen assisted cracking. While a tensile crack in the hot rolled bar always propagates in mode I, in the cold drawn wire an initially mode I crack deviates significantly from its normal mode I growth plane and approaches the wire axis or cold drawing direction, thus producing a mixed mode propagation. In hydrogen assisted cracking the deviation happens just after the fatigue pre-crack, whereas in localized anodic dissolution the material is able to undergo mode I cracking before the deflection takes place. Therefore, a different behaviour is observed in both steels and even in the same steel under distinct environmental conditions. An explanation of such behaviour can be found in the pearlitic microstructure of the steels. This microstructural arrangement is randomly-oriented in the case of the hot rolled bar and markedly oriented under the wire axis direction in the case of the cold drawn wire. Thus both materials behave as composites at the microstructural level and their plated structure (oriented or not) would explain the different time-dependent behaviour in a corrosive environment.  相似文献   

17.
Metal matrix composites based on a low carbon steel matrix reinforced with high carbon steel wires have been fabricated by a combined cold and hot rolling process. Both continuously and discontinuously aligned composites have been produced. A subsequent heat treatment allowed the formation of martenisitc, bainitic or pearlitic wires in a ferrite predominantly matrix. The optimum wire microstructure giving a composite with high strength and reasonable ductility was found to be bainitic — martensitic wires were found to contain microcracks that gave poor composite strengths and ductilities. The discontinuous wire composites produced similar strengths to the continuous composites only when they were deformed to give a wire aspect ratio greater than 20. The strengths of both types of composites showed a good fit to the rule of mixtures as the volume fraction of fibers was increased.  相似文献   

18.
活性钢热浸锌镍合金镀层工艺与性能   总被引:2,自引:1,他引:1  
热浸锌镍合金镀层技术是解决活性钢热镀锌问题的有效方法。分析了在常规热镀锌浴中加镍后,镍在镀层形成过程中的作用,以及对镀层工艺、性能的影响。结果表明,热浸锌镍合金镀层具有良好的粘附性能和耐腐蚀性能,表面光亮、均匀,减少了超厚现象,硬度和耐磨性有所提高。  相似文献   

19.
Fibre and wire reinforced copper alloys as heat sinks for fusion reactors The CuCr1Zr alloy is used in existing experimental fusion reactors and planned to be used as a heat sink in ITER because of his mechanical properties and thermal conductivity (at 20 °C 310–330 W/m/K). Because of aging this dispersion‐hardened alloy is limited in use to temperatures below 450 °C. A possibility to increase the service temperature (the aim is 550 °C) is to reinforce the alloy with SiC‐fibres or W‐wires. With the aid of SiC (SCS‐6) fibres and W‐wires (diameter ~150 μm for both) coated with the CuCr1Zr‐alloy, Cu‐MMCs are produced and their properties (tensile strength, thermal conductivity, fibre/matrix interface properties) are determined. Processing (Hot Isostatic Pressing) causes the alloy to age, making an additional heat treatment necessary in order to optimize the properties. The tensile strength of the different Cu‐MMCs was determined as a function of the volume content of the reinforcements. Tensile strength rises with increasing volume fraction of fibres (or wires) and reaches e.g. 1000 MPa for a SiC‐fibre volume fraction of 24 % or a W‐wire volume fraction of 27 %. Measurements of the thermal conductivity, performed by laser flash, show that the thermal conductivity is reduced with increasing fibre volume fraction (e.g. 200 W/m/K for a fibre volume fraction of 30 %). The W‐wire reinforced CuCr1Zr alloy has been selected because of its better thermal conductivity and interfacial properties to estimate the potential of this Cu‐MMC in a first design study of heat sinks on the basis of different divertor construction types.  相似文献   

20.
Abstract

A comprehensive review of recent literature on high strength, fine grained steels has been conducted. While relevant technologies in alloy design, processing and heat treating are included in the present review, the emphasis has been on high carbon steel wire processing technology that can be achieved with ‘conventional’ wire rolling and drawing processes. The thermomechanical processing of a pearlitic microstructure, followed by cold drawing, is recommended as the process of choice to efficiently produce an ultrafine grained ferrite–cementite microstructure for ultrahigh strength, ultrahigh carbon steel wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号