首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The most used method of biodiesel production is the transesterification of vegetable oils by a basic homogeneous catalyst. A heterogeneous reaction mixture is formed by this process which contains two phases: an ester phase and a glycerol phase. From this mixture, biodiesel is gained by sedimentation. The quality and quantity of both phases are affected by the conditions of the sedimentation process. It was studied how the conditions (independent variables: temperature of separation, amount of added water, time of sedimentation, etc.) affect the quantity and the quality of both phases (dependent variables). The Plackett–Burman statistic system was used for experiment planning. The relationship between independent and dependent variables was found and described by multidimensional linear regression. The created model allows the calculation of the optimum conditions of biodiesel production so that the quality of the biodiesel fulfills the EN 14214.  相似文献   

2.
3.
Biodiesel as a pure, non-toxic, biodegradable and renewable alternative for fossil diesel fuel has attracted much attention in recent decade. Thus, demands for researches in this field are growing up every day. In order to simplify the mentioned research a new method was introduced to determine progress and end point in transesterification of sunflower oil to biodiesel (methyl esters) by the use of physical property variation during reaction. This method can be replaced by expensive and time-consuming, quantitative analysis stage. In the present work first transesterification of sunflower oil at 65 °C with MeOH to oil molar ratio of 6:1 and 1 wt.% of KOH as catalyst under vigorous mixing at different durations was carried out to determine how conversion and physical properties change. It was concluded that this reaction proceeded over 90% in 5 min and most of the changes occurred in this short period. In the second step, to verify physical properties variation in all ranges, six blends of produced biodiesel and sunflower oil were prepared in different wt.%, as incomplete reaction mixture. Finally appropriate functions were fitted on the extracted data and were evaluated. Refractive index and specific gravity were selected as good physical properties to predict reaction progress.  相似文献   

4.
Various effects on the separation of a raw reaction mixture after the ethanolysis of rapeseed oil were investigated. Water addition, initial temperature of separation, centrifugation, ionic compound addition and time effects affecting the concentrations of potassium and free glycerol and the yield of the ester phase were revealed. Centrifugation has the most positive effect. Finally, a correlation between the concentrations of potassium and free glycerol was found.  相似文献   

5.
Optimization of the transesterification reaction in biodiesel production   总被引:1,自引:0,他引:1  
In this paper response surface methodology (RSM) was used to study the transesterification reaction of rapeseed oil for biodiesel production. The three main factors that drive the conversion of triglycerides into fatty acid methyl esters (FAME) were studied according to a full factorial design at two levels. These factors were catalyst concentration (KOH), temperature and reaction time. The range investigated for each factor was selected taking into account the process of Fox Petroli S.p.A. Analysis of variance (ANOVA) was used to determine the significance of the factors and their interactions which primarily affect the first of the two transesterification stages. This analysis evidenced the best operating conditions of the first transesterification reaction performed at Fox’s plant: KOH concentration 0.6% w/w, temperature 50 °C and reaction time 90 min with a CH3OH to KOH ratio equal to 60. Three empirical models were derived to correlate the experimental results, suitable to predict the behavior of triglyceride, diglyceride and monoglyceride concentration. These models showed a good agreement with the experimental results, demonstrating that this methodology may be useful for industrial process optimization.  相似文献   

6.
Three solid catalysts have been tested in the transesterification of fried oils: CaO, SrO, K3PO4. For CaO and SrO the different efficiency, between their use as powder or granules, has been examined. Another investigated aspect has been the catalytic activity at different catalyst loadings and recycles. At the end granules have been employed in a catalytic bed reactor, comparing results with batch systems. Results have shown that using catalyst as granule does not affect the yields after 3 h of reaction. The use of the catalytic bed reactor has given the possibility to perform the transesterification maintaining the catalyst separated from the reactants, without loss of efficiency; in fact the comparison between trials in batch reactor and in catalytic bed system has not shown differences in yields. After 3 h of reaction, at 65 °C, 5 wt% of catalyst, we have had the following FAME yields: 92% for CaO, 86% for SrO, 78% for K3PO4. The transesterification reaction has shown a sensitive influence respect to K3PO4 granules amount used; in fact the yield has reached the 85% using 10 wt% of catalyst. The reutilization of the catalyst, without regeneration, has shown a loss of efficiency of about 10-20% in decreasing yield.  相似文献   

7.
Efforts are under way to reduce diesel engine emissions (DEE) and their content of carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAH). Previously, we observed reduced PAH emissions and DEE mutagenicity caused by reformulated or newly developed fuels. The use of rapeseed oil as diesel engine fuel is growing in German transportation businesses and agriculture. We now compared the mutagenic effects of DEE from rapeseed oil (RSO), rapeseed methyl ester (RME, biodiesel), natural gas-derived synthetic fuel (gas-to-liquid, GTL), and a reference petrodiesel fuel (DF) generated by a heavy-duty truck diesel engine using the European Stationary Cycle. Mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium mammalian microsome assay with strains TA98 and TA100. The RSO particle extracts increased the mutagenic effects by factors of 9.7 up to 17 in strain TA98 and of 5.4 up to 6.4 in strain TA100 compared with the reference DF. The RSO condensates caused up to three times stronger mutagenicity than the reference fuel. RME extracts had a moderate but significantly higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. Regulated emissions (hydrocarbons, carbon monoxide, nitrogen oxides (NOx), and particulate matter) remained below the limits except for an increase in NOx exhaust emissions of up to 15% from the tested biofuels.  相似文献   

8.
Biofuel production from vegetable oil is potentially a good alternative to conventional fossil derived fuels. Moreover, liquid biofuel offers many environmental benefits since it is free from nitrogen and sulfur compounds. Biofuel can be obtained from biomass (e.g. pyrolysis, gasification) and agricultural sources such as vegetable oil, vegetable oil sludge, rubber seed oil, and soybean oil. One of the most promising sources of biofuel is vegetable oil sludge. This waste is a major byproduct of vegetable oil factories. It consists of triglycerides (61%), free fatty acid (37%) and impurities (2%). The hydrocarbon chains of triglycerides and free fatty acid are mainly made up of C16 (30%) and C18 (36%) hydrocarbons. The others consist of C12-C17 hydrocarbon chains. Transesterification can help in converting vegetable oil sludge into biofuel. The disadvantage of this method is that a large amount of methanol is required. The alternative method for this conversion is catalytic cracking. The objective of this research is to evaluate and compare the pyrolysis process with cracking catalytic reaction of vegetable oil sludge by Micro-activity test MAT 5000 of Zeton-Canada.A ZSM-5/MCM-41 multiporous composite (MC-ZSM-5/MCM-41), was successfully synthesized using silica source extracted from rice husk. The material has the MCM-41 mesoporous structure, and its wall is constructed by ZSM-5 nanozeolite crystals. The porous system of the material includes pores of the following sizes: 5 Å (ZSM-5 zeolite), 40 Å (MCM-41 mesoporous material), and another porous system whose diameter is in the range of 100-500 Å (mesoporous system) formed by the burning of organic compounds that remain in the material during the calcination process. This pore system contributes to an increase in the catalytic performance of synthesized material.The results of vegetable oil sludge cracking reaction show that the product consists of fractions such as dry gas, liquefied petroleum gas (LPG), gasoline, light cycle oil (LCO), and (heavy cycle oil) HCO, which are similar to those of petroleum cracking process.MC-ZSM-5/MCM-41 catalyst is efficient in the catalytic cracking reaction of vegetable oil sludge as it has higher conversion and selectivity for LPG and gasoline products in comparison to the pyrolysis process. Product distribution (% of oil feed) of cracking reaction over MC-ZSM-5/MCM-41 is coke (3.4), total dry gas (7.0), LPG (31.1), gasoline (42.4), LCO (8.9), HCO (7.2); and that of pyrolysis are coke (19.0), total dry gas (9.3), LPG (16.9), gasoline (28.8), LCO (13.7), and HCO (12.3).These results have indicated a new way to use agricultural waste such as rice husk for the production of promising catalysts and the processing of vegetable oil sludge to obtain biofuel.  相似文献   

9.
Rapid transesterification of soybean oil with phase transfer catalysts   总被引:1,自引:0,他引:1  
Biodiesel is a renewable, non-toxic and biodegradable alternative fuel for compression ignition engines. Biodiesel is produced mainly through base-catalyzed transesterification of animal fats or vegetable oils. However, the conventional base-catalyzed transesterification is characterized by slow reaction rates at both initial and final reaction stages limited by mass transfer between polar methanol/glycerol phase and non-polar oil phase.In our study we used phase transfer catalysts (PTCs) to facilitate anion transfer between polar methanol/glycerol phase and non-polar oil phase to speed up transesterification. The benefits of transesterification by PTCs include no need for expensive aprotic solvents, potentially simpler scaleup and higher activity (shorter reaction time). Various PTCs were investigated for base-catalyzed transesterification. Experimental results showed that base-catalyzed transesterification was enhanced with an effective PTC, indicated by the formation of high methyl ester (ME) content within a relatively short time. Individual operating variables such as molar ratios of methanol to oil, total OH to oil, PTC to base catalyst and agitation including ultrasound were investigated for transesterification with PTC. Product analyses showed that ME content higher than 96.5 wt.% was achieved after only 15 min of rapid transesterification with PTC (tetrabutylammonium hydroxide or tetrabutylammonium acetate as PTC, MeOH/oil molar ratio of 6, total OH/oil molar ratio of 0.22, PTC/KOH molar ratio of 1 and 60 °C). Free and total glycerol contents in the final product from 15 min rapid transesterification with PTC were lower than maximum allowable limits in the standard specification for biodiesel.  相似文献   

10.
Kinetics of palm oil transesterification in a batch reactor   总被引:20,自引:15,他引:20  
Methyl esters were produced by transesterification of palm oil with methanol in the presence of a catalyst (KOH). The rate of transesterification in a batch reactor increased with temperature up to 60°C. Higher temperatures did not reduce the time to reach maximal conversion. The conversion of triglycerides (TG), diglycerides (DG), and monoglycerides (MG) appeared to be second order up to 30 min of reaction time. Reaction rate constants for TG, DG, and MG hydrolysis reactions were 0.018–0.191 (wt%·min)−1, and were higher at higher temperatures and higher for the MG reaction than for TG hydrolysis. Activation energies were 14.7, 14.2, and 6.4 kcal/mol for the TG, DG, and MG hydrolysis reactions, respectively. The optimal catalyst concentration was 1% KOH.  相似文献   

11.
The Thames Research Group developed vegetable oil macromonomer (VOMM) technology to combine the advantages of oil-modified polyesters and waterborne systems, and reduce volatile organic compounds in waterborne coatings. VOMMs offer the advantage of temporary plasticization with the potential for crosslinking after film formation. However, incorporating VOMMs into emulsions is challenging because the highly hydrophobic nature of VOMMs restricts their diffusion through the water phase. Miniemulsion polymerization has been used to incorporate highly hydrophobic monomers in waterborne systems. Diffusion limitations are avoided by polymerizing inside the monomer droplets, and to ensure this, droplet stabilization is required. In our study, a soybean oil-based VOMM was used as a copolymerizable hydrophobe in miniemulsion polymerization. Monomer droplets were stabilized prior to polymerization via catastrophic phase inversion to form stable and small droplets (100 nm). Dynamic light scattering analysis was used to confirm miniemulsion stability. A coagulum-free latex was obtained after polymerization. Surface tension studies and light scattering techniques were used to confirm that monomer droplet nucleation was the dominant mechanism. Gel content studies indicated the formation of a highly branched or crosslinked network upon film application. The miniemulsion technique permitted VOMM incorporation as high as 35 wt% into the polymer backbone.  相似文献   

12.
The utilization of renewable resources such as vegetable oils [VO] for the development of environment friendly waterborne [WB] materials is encouraged worldwide. The preparation of WB materials from VO is a challenging task due to their hydrophobic nature. The present work describes the synthesis of WB epoxy from VO [WBOE]. WBOE was characterized for its structural and physico-chemical attributes. The cured material was subjected to physico-mechanical, chemical resistance tests, and thermal analyses. The coatings of WBOE showed good physico-mechanical, chemical resistance as well as thermal stability and may find application as eco-friendly WB coatings with safe usage up to 220 °C.  相似文献   

13.
Long storage stability of biodiesel from vegetable and used frying oils   总被引:2,自引:0,他引:2  
Abderrahim Bouaid 《Fuel》2007,86(16):2596-2602
Biodiesel is defined as the mono-alkyl esters of vegetable oils. Production of biodiesel has grown tremendously in European Union in the last years. Though the commercial prospects for biodiesel have also grown, there remains some concern with respect to its resistance to oxidative degradation during storage. Due to the chemical structure of biodiesel the presence of the double bond in the molecule produce a high level of reactivity with the oxygen, especially when it placed in contact with air. Consequently, storage of biodiesel over extended periods may lead to degradation of fuel properties that can compromise fuel quality.This study used samples of biodiesel prepared by the process of transesterification from different vegetable oils: high oleic sunflower oil (HOSO), high and low erucic Brassica carinata oil (HEBO and LEBO) respectively and used frying oil (UFO). These biodiesels, produced from different sources, were used to determine the effects of long storage under different conditions on oxidation stability. Samples were stored in white (exposed) and amber (not exposed) glass containers at room temperature.The study was conducted for a period of 30-months. At regular intervals, samples were taken to measure the following physicochemical quality parameters: acid value (AV), peroxide value (PV), viscosity (ν), iodine value (IV) and insoluble impurities (II). Results showed that AV, PV, ν and II increased, while IV decreased with increasing storage time of biodiesel samples. However, slight differences were found between biodiesel samples exposed and not exposed to daylight before a storage time of 12 months. But after this period the differences were significant.  相似文献   

14.
Kinetics of transesterification of soybean oil   总被引:11,自引:16,他引:11  
Transesterification of soybean oil with methanol was investigated. Three stepwise and reversible reactions are believed to occur. The effect of variations in mixing intensity (Reynolds number=3,100 to 12,400) and temperature (30 to 70°C) on the rate of reaction were studied while the molar ratio of alcohol to triglycerol (6:1) and the concentration of catalyst (0.20 wt% based on soybean oil) were held constant. The variations in mixing intensity appear to effect the reaction parallel to the variations in temperature. A reaction mechanism consisting of an initial mass transfer-controlled region followed by a kinetically controlled region is proposed. The experimental data for the latter region appear to be a good fit into a second-order kinetic mechanism. The reaction rate constants and the activation energies were determined for all the forward and reverse reactions.  相似文献   

15.
Thu Nguyen  Linh Do  David A. Sabatini 《Fuel》2010,89(9):2285-2291
Vegetable oils have been studied as a feasible substitute for diesel fuel, and short term tests using neat vegetable oils have shown results comparable to those of diesel fuel. However, engine problems arise due to the high oil viscosity after long-term usage. Vegetable oil/diesel blending as biodiesel fuel has been shown to be one technique to reduce vegetable oil viscosity. The goal of this research is to demonstrate the feasibility of producing this biodiesel fuel via vegetable oil extraction using diesel-based reverse-micellar microemulsions as an extraction solvent. In this extraction technique, peanut oil is directly extracted into the oil phase of the microemulsion based on the “likes dissolve likes” principle and the product of the extraction process is peanut oil/diesel blend. The results show that diesel-based reverse micellar extract oil from peanuts more effectively than both diesel and hexane alone under the same extraction condition. An extraction efficiency of 95% was achieved at room temperature and short extraction time of 10 min in just a single extraction step. The extracted peanut oil/diesel blend was tested for peanut oil fraction, viscosity, cloud point and pour point, which all meet the requirements for biodiesel fuel.  相似文献   

16.
Hydroprocessing of neat sunflower oil was carried out at 360-420 °C and 18 MPa over a commercial hydrocracking catalyst in a bench scale fixed bed reactor. In the studied experimental range, products consisted exclusively of hydrocarbons that differed significantly in composition. While the concentration of n-alkanes exceeded 67 wt.% in the reaction products collected at 360 °C, it decreased to just 20 wt.% in the product obtained at 420 °C. Consequently, the fuel properties of the latter product were very similar to those of standard (petroleum-derived) diesel fuel. Particularly, it exhibited excellent low-temperature properties (cloud point −11 °C; CFPP −14 °C). Reaction products obtained at 400 and 420 °C were blended into petroleum-derived diesel fuel in three concentration levels ranging from 10 to 50 wt.% and the fuel properties of these mixtures were evaluated. Diesel fuel mixtures containing the product of sunflower oil hydrocracking at 420 °C showed very good low-temperature properties including cloud point (−8 °C) and CFPP (−15 °C) that was further lowered to −25 °C due to addition of flow improvers.  相似文献   

17.
Based on the analysis of literature data, a number of vegetable oils most promising for biodiesel synthesis were selected. The studies of the phase state and calculations of the phase diagrams for methanol/oil were performed in a wide range of temperature, pressure and alcohol/oil molar ratios. The conditions to provide supercritical state of the reaction mixture at vegetable oil conversion were found.  相似文献   

18.
In this study, the catalytic activity of dolomite was evaluated for the transesterification of canola oil with methanol to biodiesel in a heterogeneous system. The influence of the calcination temperature of the catalyst and the reaction variables such as the temperature, catalyst amount, methanol/canola oil molar ratio, and time in biodiesel production were investigated. The maximum activity was obtained with the catalyst calcined at 850 °C. When the reaction was carried out at reflux of methanol, with a 6:1 molar ratio of methanol to canola oil and a catalyst amount of 3 wt.% the highest FAME yield of 91.78% was obtained after 3 h of reaction time.  相似文献   

19.
Transesterification of sunflower oil with methanol was carried out using potassium hydroxide and methoxide as catalysts and MTBE as cosolvent. The aim of this work was to study and optimize the reaction parameters. Chosen parameters were reaction time, catalyst amount and methanol amount (expressed as catalyst-to-oil and methanol-to-oil molar ratios, respectively). The response variables were methyl ester content (ME) and acid value (AV) due to their relationship with the completion and yield reaction, respectively. A factorial plus composite design was developed to carry out the optimization. From this design, several quadratic models have been used to fit the experimental data. All the factors studied had a positive influence on methyl ester content and acid value, except the methanol amount on acid value. For methoxide catalyst, optimum values were 0.235 catalyst to oil molar ratio, 12 methanol to oil molar ratio and 5 min reaching 99 wt.% ME and 0.20 mg KOH/g of AV.  相似文献   

20.
The feasibility of using ultrasonic mixing to obtain biodiesel from soybean oil was established. The alkaline transesterification reaction was studied at three levels of temperature and four alcohol-to-oil ratios. Excellent yields were obtained for all conditions. For example, at 40°C with ultrasonic agitation and a molar ratio of 6∶1 methanol/oil, the conversion to FAME was greater than 99.4% after about 15 min. For a 6∶1 methanol/oil ratio and a 25 to 60°C temperature range, a pseudo second-order kinetic model was confirmed for the hydrolysis of DG and TG. Reaction rate constants were three to five times higher than those reported in the literature for, mechanical agitation. We suspect that the observed mass transfer and kinetic rate enhancements were due to the increase in interfacial area and activity of the microscopic and macroscopic bubbles formed when ultrasonic waves of 20 kHz were applied to a two-phase reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号