首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Xu  Y. Wu  Y. Chang 《化学工程与技术》2009,32(12):1922-1928
In this work, an experimental study was made on gas injection into an oil‐water flow in horizontal pipes with two unequal pipe diameters. Special attention was given to the influence of gas injection on the average in‐situ oil fraction. Measurements were made for input water flow rates of 1.25–5 m3/h, input oil flow rates of 0–8 m3/h and input gas flow rates of 0–9 m3/h. It was found that gas injection has a considerable influence on the in‐situ oil fraction. In general, a small increase in the rate of air injection leads to greatly decreasing in‐situ oil fractions. The in‐situ oil fraction with gas injection decreases to a greater extent than that without gas injection, at the same input liquid flow rates. At a given input water flow rate, the value of the in‐situ oil fraction in the pipe with the larger diameter is higher than that in the pipe with the smaller diameter. Furthermore, the drift flux models were extended to predict the average in‐situ fractions of the oil phase in the intermittent three‐phase flow regimes. A good agreement is obtained between theory and data, especially for the in‐situ oil fraction range of 0.2–1.0.  相似文献   

2.
Two‐phase liquid flows at +5° inclination from the horizontal were studied experimentally for mixture velocities between 0.7 and 2.5 m/s and input oil fractions between 10% and 90%. The results were compared with a two‐fluid model that includes entrainment. The investigations were performed in a 38‐mm ID stainless steel test section, with water and oil as test fluids. Dual continuous flow (both phases remain continuous with inter‐dispersion) prevailed, while the two‐phase pressure gradient was found lower than the single‐phase oil or water. At low mixture velocities the velocity ratio increased with oil fraction while at high ones it decreased. Compared to horizontal flow, water holdup was higher and frictional pressure gradient lower.  相似文献   

3.
Gas holdup and liquid circulation of one conventional draft tube and three different convergence‐divergence draft tubes in an internal loop airlift reactor were investigated. Experiments were carried out in two‐phase systems with air‐water and air‐CMC (carboxyl methyl cellulose) solution and three‐phase system with air‐water‐resin particles. The two‐phase drift‐flux model was used to estimate gas holdup for three‐phase Newtonian and two‐phase non‐Newtonian systems. It is shown that gas holdup in convergence‐divergence draft tubes is higher than that in a conventional draft tube and increases with superficial gas velocity. Variation of the structural parameters of convergence‐divergence draft tubes has little effect on gas holdup in the two‐phase and three‐phase system. The mathematical model, which is based on a drift‐flux model, was developed to describe the liquid circulation velocity in the reactor satisfactorily.  相似文献   

4.
Two‐phase flow pattern and friction characteristics for an air–water system in a 3.17 mm smooth tube are reported in this study. The range of mass flux is between 50 and 700 kg/m2s. The experimental data show that the two‐phase friction multipliers are strongly related to the flow pattern. For a stratified‐wavy flow pattern, a mass‐flux dependence of the two‐phase multipliers is seen. For a non‐stratified flow pattern, the two‐phase frictional multipliers are comparatively independent of mass flux. Correlations of the frictional multipliers are developed for stratified and non‐stratified flow. To use the appropriate correlation in different regime, a simple criterion is proposed.  相似文献   

5.
The effect of tube diameter on two‐phase flow patterns was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6, and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01–50 and 0.01–3 m/s, respectively. The gas and liquid flow rates were measured and the two‐phase flow pattern images were recorded using high‐speed CMOS camera. The flow patterns observed were dispersed bubbly, bubbly, slug, slug‐annular, wavy‐annular, stratified, and annular flows. These flow patterns were not observed in all the test diameters, but were found to be unique to particular tube diameters, confirming the effect of tube diameter on the flow pattern. The data obtained were compared to existing experimental data and flow regime transition maps which show generally reasonable overall agreement at the larger diameters, but significant differences were observed with the smaller diameter tubes.  相似文献   

6.
The two‐phase flow pattern for air‐water mixtures inside a 6.9 mm U‐tube is reported to have curvature ratios of 3?7.1. At a lower total mass flux of 50 kg/m2·s and a quality of 0.1, or at a larger curvature ratio of 7.1, no influence on the flow patterns is seen. However, if the curvature ratio is reduced to 3, the flow pattern in the recovery region just after the return bend is temporally turned from stratified flow into annular flow. For a quality larger than 0.4, the annular flow pattern prevails in the entire tube. For G = 400 kg/m2·s and x < 0.01, the size of the plug in the downstream is usually larger than that in the upstream due to the coalesce in the return bend. This coalescence phenomenon continues to further increase the total mass flux at the lower quality region. For a total mass flux above 500 kg/m2·s, the bubbly flow pattern in the upstream region may become intermittent.  相似文献   

7.
8.
Hydrodynamic data obtained from laboratory‐scale trickle‐beds often fail to accurately represent industrial‐scale systems with high packing aspect ratios and column‐to‐particle diameter ratios. In this study, pressure drop, liquid holdup, and flow regime transition were investigated in a pilot‐scale trickle‐bed column of 33 cm ID and 2.45 m bed height packed with 1.6 mm × 8.4 ± 1.4 mm cylindrical extrudates for air‐water mass superficial velocities of 0.0023 – 0.094 kg/m2s and 4.5 – 45 kg/m2s, respectively, at atmospheric pressure. Significant deviation was observed from pressure drop and liquid holdup correlations at low liquid flows rates, corresponding to gravity‐driven flow limit. Likewise, liquid saturation is overestimated by correlations at high liquid flow rates, owing to significantly reduced wall effects. Lastly, trickle‐to‐dispersed bubble flow and trickle‐to‐pulsing flow regime transitions are reported using a combination of visual observations and analysis of the magnitude of local pressure fluctuations within the column. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2560–2569, 2018  相似文献   

9.
Sand holdup is one of the most important hydrodynamic parameters that is needed for performance estimation, design, operation and control of oil‐gas‐sand multiphase production and pipeline transportation systems. The performance of oil‐gas‐sand multiphase flow can be reliably evaluated by measuring the sand holdup in such oil‐gas‐sand multiphase production and pipeline transportation systems. In the present work, a local sand holdup has been measured under conditions analogous to the horizontal oil‐gas‐sand three‐phase slug flow in pipelines. Accurate local sand particle holdup measurements were performed by the digital imaging technique. The results revealed the influence of operating conditions such as gas and liquid velocities and sand particle loading on the distribution of the local sand particle holdup in the horizontal air‐water‐sand multiphase slug flow pipe. Explanations for the observed trends are provided, shedding light on the general structures and mechanisms of the distribution of the local sand holdup in a horizontal oil‐gas‐sand three‐phase slug flow. Such information on the horizontal air‐water‐sand three‐phase slug flow mechanisms are essential to advance the mechanistic approach for predicting local sand holdup distribution and the subsequent effect on sand deposition during multiphase petroleum production and transfer operations.  相似文献   

10.
A visual observation of the two‐phase flow across vertically split U‐type junctions and its flow redistribution inside two 2.7‐mm diameter smooth tubes with curvature ratios (2R/D) of 3 and 7, respectively, are reported. The range of mass flux is between 100 and 700 kg/m2s and quality (x) ranges from 0.001 to 0.5. The ratio of liquid distribution between the upper and lower outlet legs is related to the inlet flow pattern, but its influence is reduced at higher mass flux. The difference in liquid flow rates in the lower and upper legs is significantly affected by gravity at a small inlet mass flux, but this difference becomes less profound when the inlet mass flux is increased. The difference between the liquid flux in the upper and lower leg is reduced for the smaller curvature radius due to the reduced effect of gravity between the upper and lower legs. However, there is no consistent trend of gas flow distribution across the U‐type junction as compared to liquid flow distribution. The air mass flux in the upper and lower legs always increase with an increase in both gas quality and the total mass flux.  相似文献   

11.
Experimental results on flow pattern, hold–up and pressure drop are presented for cocurrent upward and downward air water flow in helical coils. A tube of 0.01 m internal diameter was used and the ratio of coil to tube diameter was varied from 11 to 156.5. Water flow rate was varied from 4.9 × 10-6 m3/s to 92 × 10-6 m3/s while the range of gas flow rate covered was 83 × 10-6 m3/s to 610 × 10-6 m3/s. A new mechanistic approach is proposed to correlate pressure drop data in coils. The proposed model retains the identity of each phase and separately accounts for the effects of curvature and tube inclination resulting from the torsion of the tube. This makes it possible to use a single model to predict pressure drop for both upward and downward two–phase flow in coiled tubes. Required correlations for hold–up, interfacial friction factor and friction factors for individual phases are provided.  相似文献   

12.
Flow patterns of liquid‐liquid two‐phase fluids in a new helical microchannel device were presented in this paper. Three conventional systems were considered: kerosene‐water, n‐butyl acetate‐water, and butanol‐water. Six different flow patterns, slug flow, continuous parallel flow, discontinuous deformation parallel flow, discontinuous deformation parallel‐droplet flow, droplet‐slug flow, and filiform‐droplet flow, were observed. The influence of interfacial tension, microchannel structure, and rotation rate on two‐phase flow patterns were studied, and a universal flow pattern map was presented and discussed. The systems without mass transfer (0.1 g/g (10 %) tri‐n‐butyl phosphate (TBP)‐water, 0.2 g/g (20 %) TBP‐water, and 0.8 g/g (80 %) TBP‐water) and the system with mass transfer (0.8 g/g (80 %) TBP‐0.62 g/g (62 %) H3PO4) were used to verify the validity of the proposed universal flow pattern map in predicting flow patterns. The results showed that the former compared with the latter can be predicted more accurately by the universal flow pattern map.  相似文献   

13.
The stratified configuration is one of the basic and most important distributions during two phase flow through horizontal pipes. A number of studies have been carried out to understand gas‐liquid stratified flows. However, not much is known regarding the simultaneous flow of two immiscible liquids. There is no guarantee that the information available for gas‐liquid cases can be extended to liquid‐liquid flows. Therefore, the present work attempts a detailed investigation of liquid‐liquid stratified flow through horizontal conduits. Gas‐liquid flow exhibits either smooth or wavy stratified orientations, while liquid‐liquid flow exhibits other distinct stratified patterns like three layer flow, oil dispersed in water, and water flow, etc. Due to this, regime maps and transition equations available for predicting the regimes in gas‐liquid flow cannot be extended for liquid‐liquid cases by merely substituting phase physical properties in the equations. Further efforts have been made to estimate the in‐situ liquid holdup from experiments and theory. The analysis considers the pronounced effect of surface tension, and attempts to modify the Taitel‐Dukler model to account for the curved interface observed in these cases. The curved interface model of Brauner has been validated with experimental data from the present work and those reported in literature. It gives a better prediction of liquid holdup in oil‐water flows and reduces to the Taitel‐Dukler model for air‐water systems.  相似文献   

14.
Experimental investigations have been carried out in Reversed Flow Jet Loop Reactor (RFJLR) to study the influence of liquid flow rate, gas flow rate, immersion height of two‐fluid nozzle in reactor and nozzle diameter on gas holdup without circulation, that is, gas–liquid mixture in draft tube only (Egd) and gas holdup with circulation loop (Eg). Also critical liquid flow rate required for transition from draft tube to circulation loop has been determined. Gas holdup was measured by isolation valve technique. Gas holdup in draft tube and circulation loop increased with increase in liquid flow rate and gas flow rate. It is observed that the increased flow rate is required for achieving a particular value of gas holdup with larger nozzle diameter. Nozzle at the top edge of draft tube have higher gas holdup as compared to other positions. It has been noted that, no significant recirculation of gas bubbles into the top of draft tube from annulus section has been observed till a particular liquid flow rate is reached. A plot of gas holdup with no circulation and with circulation mode determines minimum liquid flow rate required to achieve complete circulation loop. Critical liquid flow rate required to achieve complete circulation loop increases with increase in gas flow rate and is minimum at lowest immersion height of two‐fluid nozzle.  相似文献   

15.
Drag reduction in the turbulent flow of aqueous solutions of polyacrylamide and poly(ethylene oxide) was studied in tubes and parallel plates. Friction factors were determined at Reynolds numbers up to 20,000 for polymer concentrations of 0.10 to 400g/m3 in glass tubes run in a constant-head, gravity flow system in which the velocity was determined from the horizontal distance traveled by the effluent stream while falling a set vertical distance; and in Plexiglas parallel plates run in a constant-velocity, machine-driven system in which the pressure drop between two points on the plates was measured with a differential pressure transducer. A general method of correlating fraction laminarization or drag reduction effectiveness with polymer concentration for Reynolds numbers above 6000 was developed in which two master curves, one for very low concentrations which was the same for both tubes and parallel plates, and one for higher concentrations which differed for tubes and parallel plates, were found to represent the data very well for both polymers and all conduit sizes and Reynolds numbers. Additionally, relationships were found between conduit size and maximum fraction laminarization and optimum polymer concentration.  相似文献   

16.
This work shows the formation of a high internal phase ratio oil‐in‐water (O/W) emulsion using a new type of a two‐rod batch mixer. The mixture components have sharply different viscosities [1/3400 for water‐in‐oil (W/O)], similar densities (1/0.974 for W/O), and an O/W ratio of 91% (wt/wt). The simple design of this mixer leads to a low‐energy process (106 < energy density [J m?3] < 107), characterized by low rotational speed and laminar flow. The droplet size distribution during the emulsification was investigated according to different physical and formulation parameters such as stirring time (few minutes < t < 1 h), rotational speed (60 < Ω < 120 rpm), surfactant type (Triton X‐405 and X‐100), concentration (from 1 to 15.9 wt % in water), and salt addition (30 g/L). We show that all studied parameters allow a precise control of the droplet size distribution and the rheology. The resulting emulsions are unimodal and the mean droplet diameter is between 30 μm and 8 μm. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

17.
A model based on two‐phase volume‐averaged equations of motion is proposed to examine the gravity dependence of the bubble‐to‐pulse transition in gas‐liquid cocurrent down‐flow through packed beds. As input, the model uses experimental correlations for the frictional pressure drop under both normal gravity conditions and in the limit of vanishing gravity, as well as correlations for the liquid‐gas interfacial area per unit volume of bed in normal gravity. In accordance with experimental observations, the model shows that, for a given liquid flow, the transition to the pulse regime occurs at lower gas‐flow rates as the gravity level or the Bond number is decreased. Predicted transition boundaries agree reasonably well with observations under both reduced and normal gravity. The model also predicts a decrease in frictional pressure drop and an increase in total liquid holdup with decreasing gravity levels. © 2013 American Institute of Chemical Engineers AIChE J 60: 778–793, 2014  相似文献   

18.
Emulsions are encountered at different stages of oil production processes, often impacting many aspects of oilfield operations. Emulsions may form as oil and water come in contact inside the reservoir rock, valves, pumps, and other equipments. Snap‐off is a possible mechanism to explain emulsion formation in two‐phase flow in porous media. Quartz capillary tubes with a constriction (pore neck) served to analyze snap‐off of long (“infinite”) oil droplets as a function of capillary number and oil‐water viscosity ratio. The flow of large oil drops through the constriction and the drop break‐up process were visualized using an optical microscope. Snap‐off occurrence was mapped as a function of flow parameters. High oil viscosity suppresses the breakup process, whereas snap‐up was always observed at low dispersed‐phase viscosity. At moderate viscosity oil/water ratio, snap‐off was observed only at low capillary number. Mechanistic explanations based on competing forces in the liquid phases were proposed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

19.
Phase inversion and its associated phenomena are experimentally investigated in co‐current upward and downward oil‐water flow in a vertical stainless steel test section (38 mm I.D.). Oil (ρo=828 kg/m3, µo=5.5 mPa s) and tap water are used as test fluids. Two inversion routes (w/o to o/w and o/w to w/o) are followed in experiments where either the mixture velocity is kept constant and the dispersed phase fraction is increased (type I experiments), or the continuous phase flow rate is kept constant and that of the dispersed phase is increased (type II experiments). By monitoring phase continuity at the pipe centre and at the wall it was found that phase inversion does not happen simultaneously at all locations in the pipe cross‐section. In type I experiments, the velocity ratios (Uo/Uw) where complete inversion appeared acquired the same constant value in both flow directions, although the phase inversion points, based on input phase fractions, were different. In contrast to previous results in horizontal flows, frictional pressure gradient was found to be minimum at the phase inversion point. The interfacial energies of the two dispersions before and after phase inversion, calculated from the measured drop sizes, were found to be different in contrast to the previously suggested criterion of equal energies for the appearance of the phenomenon. In type II experiments the phase inversion point was found to depend on mixture velocity for low and medium velocities but not for high ones. In all cases studied an ambivalent region, commonly reported for inversion in stirred vessels, was not observed.  相似文献   

20.
The present report studies on the flow pattern transitions during vertical air water downflow through millichannels (0.83 ≤ Eötvös no. ≤ 20.63). Four basic flow patterns namely falling film flow, slug flow, bubbly flow, and annular flow are observed in the range of experimental conditions studied and their range of existence has been noted to vary with tube diameter and phase velocities. Based on experimental observations, phenomenological models are proposed to predict the transition boundaries between adjacent patterns. These have been validated with experimental flow pattern maps from the present experiments. Thus the study formalizes procedure for developing a generalized flow pattern map for gas‐liquid downflow in narrow tubes. © 2016 American Institute of Chemical Engineers AIChE J, 63: 792–800, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号