首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the environmental impact of massive heat-pump introduction on greenhouse gas (GHG) emissions in different electricity-generation systems, dynamic simulations have been carried out for four European countries, namely, Belgium, France, Germany and the Netherlands. For this purpose, the simulations are performed with Promix, a tool that models the overall electricity-generation system. Three heating devices are considered for each country, namely classic fossil-fuel heating, heat pumps and electric resistance heating. Both direct heat-pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat-pump heating with a COP of 5 are investigated. The introduction of electric heating in an electricity-generation system increases the demand for electricity and generates a shift of emissions from fossil-fuel heating systems to electrical plants. The results of the simulations reveal that the massive introduction of either heat pump or resistance heating is always favourable to the environment in France. The most environmentally friendly scenario in 2010 is projected to reduce GHG emissions by about 3.8 Mton compared to the reference scenario. In Belgium and Germany, the largest reduction in GHG emissions occurs with accumulation heat pumps. Belgium can save up to 220 kton of GHG emissions, while Germany can attain reductions of 800 kton in 2010. In the Netherlands, a significant reduction can be achieved by considering the addition of gas-fired combined cycle (CC) power plants, together with the introduction of electric heating, resulting in emissions savings of 410 kton.  相似文献   

2.
This paper discusses the opportunities that exist for reducing greenhouse gases (GHG) emissions by switching from coal to gas‐fired units in electricity generation, ‘forced’ by the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) price level of CO2. It attempts to find efficient GHG cost profiles leading to a reasonable GHG emission reduction. In a methodological demonstration case (an electricity generation system consisting of two coal and two gas‐fired power plants), we demonstrate how a GHG emission cost can lead to a certain switch of power plants with an accompanying GHG emission reduction. This GHG emission cost is dependent on the load level. The switching point method is applied to an electricity generation system similar to the Belgian one. It is found that the greatest opportunities for GHG emission reductions are situated in the summer season. By switching only the coal‐fired units with the combined cycle (CC) gas‐fired units, a significant GHG emission reduction is possible at a modest cost. With the simulation tool E‐Simulate, the effect of a GHG emission cost in the summer season is investigated. A potential GHG emission reduction of 9.5% in relation to the case where there is no cost linked to GHG emission is possible at a relative low cost. When implementing a GHG cost in winter season, a smaller GHG reduction occurs while costs are higher. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This study estimates energy use and greenhouse gas (GHG) emissions associated with operations of alternative residential energy systems. In case studies, the same detached four-bedroom house built in accordance with R2000 standards is studied in five Canadian cities with different climate and electricity mix. Conventional energy systems and alternatives using three technologies, namely ground source heat pumps (GSHPs), photovoltaics, and energy-efficient appliances; and their combinations are investigated. The results show that using a GSHP in Calgary may increase overall GHG emissions, as electricity to drive the pump is primarily produced in coal-fired power stations. Using photovoltaics to generate electricity from carbon-free sources or energy-efficient appliances to reduce electricity demands result in almost no GHG reductions in Montreal and Vancouver, where over 90% of electricity comes from hydro power. The results also show that the use of photovoltaics in combination with GSHPs in Ottawa and Toronto, or with energy-efficient appliances in Calgary, can lead to more GHG reductions, compared to the use of a single technology. As a result, while climate affects energy use to some degree, local sources of electricity may have a greater impact on overall GHG emissions, which is an important measure of environmental impacts.  相似文献   

4.
Increased atmospheric CO2 concentration is widely being considered as the main driving factor that causes the phenomenon of global warming, due to the ever‐boosting use of fossil fuels. In this study, a fuzzy‐stochastic programming model with soft constraints (FSP‐SC) is developed for electricity generation planning and greenhouse gas (GHG) abatement in an environment with imprecise and probabilistic information. The developed FSP‐SC is applied to a case study of long‐term planning of a regional electricity generation system, where integer programming technique is employed to facilitate dynamic analysis for capacity expansion within a multi‐period context to satisfy increasing electricity demand. The results indicate different relaxation levels can lead to changed electricity generation options, capacity expansion schemes, system costs, and GHG emissions. Several sensitivity analyses are also conducted to demonstrate that relaxation of different constraints have different effects on system cost and GHG emission. Tradeoffs among system costs, resource availabilities, GHG emissions, and electricity‐shortage risks can also be tackled with the relaxation levels for the objective and constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system.The analysis of a fossil plant heating system has been done with a typical building simulation software IDA–ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA–ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy.The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study “ground source heat pump with condenser inlet temperature 30 °C and varying evaporator inlet temperature” has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system.  相似文献   

6.
In this paper, we evaluate the viability of a 9.5‐kWe wooden pellet‐fueled Stirling engine‐based micro‐cogeneration plant as a substitute for small‐scale district heating. The district heating systems against which the micro‐cogeneration plant is compared are based either on a pellet‐fueled boiler or a ground‐source heat pump. The micro‐cogeneration and district heating plants are compared in terms of primary energy consumption, CO2 emissions, and feasibility of the investment. The comparison also considers an optimally operated individual 0.7‐kWe pellet‐fueled Stirling engine micro‐cogeneration system with exhaust gas heat recovery. The study is conducted in two different climates and contributes to the knowledge base by addressing: (i) hourly changes in the Finnish electricity generation mix; and (ii) uncertainty related to what systems are used as reference and the treatment of displaced grid electricity. Our computational results suggest that when operated at constant power, the 9.5‐kWe Stirling engine plant results in reduced annual primary energy use compared with any of the alternative systems. The results are not sensitive to climate or the energy efficiency or number of buildings. In comparison with the pellet‐fueled district heating plant, the annual use of primary energy and CO2 emissions are reduced by a minimum of 25 and 19%, respectively. Owing to a significant displacement of grid electricity, the system's net primary energy consumption appears negative when the total built area served by the plant is less than 1200 m2. On the economic side, the maximum investment cost threshold of a CHP‐based district heating system serving 10 houses or more can typically be positive when compared with oil and pellet systems, but negative when compared with a corresponding heat pump system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Ground source heat pump systems are becoming more and more popular, even though their high initial cost is an obstacle to their wider penetration of the heating and cooling market. The purchase of the heat pump itself is one of the dominant costs, and the heat pump selection also influences the operation costs through its coefficient of performance (COP) value. However, few studies are available on this topic. Based on 23 water–water heat pump models available on the market, a correlation was developed to estimate their purchase cost as a function of the nominal cooling load of the heat pump. These heat pumps can be used in geothermal applications as well as in other heating, ventilating, air conditioning and refrigeration (HVAC&R) systems. The correlation is valid for a nominal cooling load between 20 and 841 kW. The nominal COP of the heat pumps was found to have virtually no effect on their purchase costs. Also, two correlations were developed to relate variations of cooling power and COP to the temperature levels on both sides of the heat pump. The heating mode is also considered. The correlations are useful to estimate the required nominal size of a heat pump given design operating conditions and to optimize ground source heat pump systems from a techno‐economical standpoint. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
 Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005–2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario.  相似文献   

9.
The operation of a three‐heat‐reservoir heat pump is viewed as a production process with exergy as its output. The relations between the optimal profit and COP (coefficient of performance), and the COP bound at the maximum profit of the heat pump are derived based on a general heat transfer law. The results provide a theoretical basis for developing and utilizing a variety of heat pumps. The focus of this paper is to search the compromised optimization between economics (profit) and the utilization factor (COP) for finite‐time endoreversible thermodynamic cycles. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Enhancement of energy efficiency and introduction of newer and more efficient space and water heating technologies in the UK domestic sector are essential if the UK is to achieve its ambitious target for 2050 of reducing greenhouse gas (GHG) emissions to less than 80% of 1990 levels. The UK domestic sector currently relies heavily on conventional boilers for space and water heating even though electric or gas engine driven vapour compression heat pumps can provide heating and cooling with more than double the efficiency of conventional boilers. UK government has recently introduced laws and policies that are designed to accelerate the uptake of renewable heating technologies by domestic consumers rather than relying solely on market forces. To date despite their excellent performance heat pumps are not the primary choice of the general UK domestic consumer. Factors that may influence this behaviour have been analysed and are discussed here.  相似文献   

11.
Shallow geothermal systems such as open and closed geothermal heat pump (GHP) systems are considered to be an efficient and renewable energy technology for cooling and heating of buildings and other facilities. The numbers of installed ground source heat pump (GSHP) systems, for example, is continuously increasing worldwide. The objective of the current study is not only to discuss the net energy consumption and greenhouse gas (GHG) emissions or savings by GHP operation, but also to fully examine environmental burdens and benefits related to applications of such shallow geothermal systems by employing a state-of the-art life cycle assessment (LCA). The latter enables us to assess the entire energy flows and resources use for any product or service that is involved in the life cycle of such a technology. The applied life cycle impact assessment methodology (ReCiPe 2008) shows the relative contributions of resources depletion (34%), human health (43%) and ecosystem quality (23%) of such GSHP systems to the overall environmental damage. Climate change, as one impact category among 18 others, contributes 55.4% to the total environmental impacts. The life cycle impact assessment also demonstrates that the supplied electricity for the operation of the heat pump is the primary contributor to the environmental impact of GSHP systems, followed by the heat pump refrigerant, production of the heat pump, transport, heat carrier liquid, borehole and borehole heat exchanger (BHE). GHG emissions related to the use of such GSHP systems are carefully reviewed; an average of 63 t CO2 equivalent emissions is calculated for a life cycle of 20 years using the Continental European electricity mix with 0.599 kg CO2 eq/kWh. However, resulting CO2 eq savings for Europe, which are between ?31% and 88% in comparison to conventional heating systems such as oil fired boilers and gas furnaces, largely depend on the primary resource of the supplied electricity for the heat pump, the climatic conditions and the inclusion of passive cooling capabilities. Factors such as degradation of coefficient of performance, as well as total leakage of the heat carrier fluid into the soil and aquifer are also carefully assessed, but show only minor environmental impacts.  相似文献   

12.
In many countries, economies are moving towards internalization of external costs of greenhouse‐gas (GHG) emissions. This can best be achieved by either imposing additional taxes or by using an emission‐permit‐trading scheme. The electricity sector is under scrutiny in the allocation of emission‐reduction objectives, not only because it is a large homogeneous target, but also because of the obvious emission‐reduction potential by decreasing power generation based on carbon‐intensive fuels. In this paper, we discuss the impact of a primary‐energy tax and a CO2 tax on the dispatching strategy in power generation. In a case study for the Belgian power‐generating context, several tax levels are investigated and the impact on the optimal dispatch is simulated. The impact of the taxes on the power demand or on the investment strategies is not considered. As a conclusion, we find that a CO2 tax is more effective than a primary‐energy tax. Both taxes accomplish an increased generation efficiency in the form of a promotion of combined‐cycle gas‐fired units over coal‐fired units. The CO2 tax adds an incentive for fuel switching which can be achieved by altering the merit order of power plants or by switching to a fuel with a lower carbon content within a plant. For the CO2 tax, 13 €/tonCO2 is withheld as the optimal value which results in an emission reduction of 13% of the electricity‐related GHG emissions in the Belgian power context of 2000. A tax higher than 13 €/tonCO2 does not contribute to the further reduction of GHGs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.  相似文献   

14.
Coal fired electricity is a major factor in Australia’s greenhouse gas emissions (GHG) emissions. The country has adopted a mandatory renewable energy target (MRET) to ensure that 20% of electricity comes from renewable sources by 2020. In order to support the MRET, a market scheme of tradable Renewable Energy Certificates (RECs) has been implemented since 2001. Generators using biomass from eligible sources are able to contribute to GHG emission reduction through the substitution of coal for electricity production and are eligible to create and trade RECs. This paper quantifies the potential biomass resources available for energy generation from forestry and agriculture in the Green Triangle, one of the most promising Australian Regions for biomass production. We analyse the cost of electricity generation using direct firing of biomass, and estimate the required REC prices to make it competitive with coal fired electricity generation. Major findings suggest that more than 2.6 million tonnes of biomass are produced every year within 200 km of the regional hub of Mount Gambier and biomass fired electricity is viable using feedstock with a plant gate cost of 46 Australian Dollars (AUD) per tonne under the current REC price of 34 AUD per MWh. These findings are then discussed in the context of regional energy security and existing targets and incentives for renewable energies.  相似文献   

15.
In this study, the performance of a reversible ground‐source heat pump coupled to a municipality water reticulation system, is compared experimentally and with simulations to a conventional air‐source heat pump for space cooling and heating. A typical municipality water reticulation system comprises hundreds of kilometres of pipes designed in loops that will ensure adequate circulation of water. This results in a substantial heat exchanger with great potential. Indirect heat transfer occurs between the refrigerant and ground via the municipality water reticulation system that acts as the water‐to‐ground heat exchanger. The experimental and simulated comparisons of the ground‐source system to the air‐source system are conducted in both the cooling and the heating cycles. Climatalogical statistics are used to calculate the capacities and coefficients of performance of the ground‐source and air‐source heat pumps. Results obtained from measurements and simulations indicate that the utilization of municipality water reticulation systems as a heat source/sink is a viable method of optimizing energy usage in the air conditioning industry, especially when used in the heating mode. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Sri Lanka has a hydropower dominated power system with approximately two thirds of its generation capacity based on large hydro plants. The remaining one third are based on oil fired thermal generation with varying technologies, such as oil steam, Diesel, gas turbines and combined cycle plants. A significant portion of this capacity is in operation as independent power plants (IPPs). In addition to these, Sri Lanka presently has about 40 MWs of mini-hydro plants, which are distributed in the highlands and their surrounding districts, mainly connected to the primary distribution system. Further, there are a few attempts to build fuel wood fired power plants of small capacities and connect them to the grid in various parts of the country.

The study presented in this paper investigates the impact of these new developments in the power sector on the overall emissions and the greenhouse gas (GHG) emissions in particular. It examines the resulting changes to the emissions and costs in the event of developing the proposed coal power plant as an IPP under different investment and operational conditions. The paper also examines the impact on emissions with 80 MWs of distributed power in different capacities of wind, mini-hydro and wood fired power plants.

It is concluded that grid connected, distributed power generation (DPG) reduces emissions, with only a marginal increase in overall costs, due to the reduction in transmission and distribution network losses that result from the distributed nature of generation. These reductions can be enhanced by opting for renewable energy based DPGs, as the case presented in the paper, and coupling them with demand side management measures. It is also concluded that there is no impact on overall emissions by the base load IPPs unless they are allowed to change over to different fuel types and technologies.  相似文献   


17.
A heat pump system is the ideal way to extend the heat supply of existing oil or gas fired heating system. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossils fuels simultaneously reduces. In order to investigate the performance of the solar-ground source heat pump system in the province of Erzurum having cold climate, an experimental set-up was constructed. The experimental apparatus consisted of solar collectors, a ground heat exchanger (GHE), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May of 2008-2009. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP) and the system performance (COPS). The coefficient of performance of the heat pump and system were found to be in the range of 3.0-3.4 and 2.7-3.0, respectively. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey.  相似文献   

18.
The aim of this paper is to present the current status of the coal‐fired power sector in an enlarged EU (EU‐15 plus EU member candidate states) in relation with the main topics of the European Strategy for the energy production and supply. It is estimated that 731 thermoelectric units, larger than 100 MWe, are operating nowadays, and their total installed capacity equals to 200.7 GWe. Coal contribution to the total electricity generation with reference to other fuel sources, is by far more intensive in the non‐EU part (EU member candidate states), compared to the EU member states. It is expected that even after the enlargement, the European Union will strongly being related to coal. Enlargement will bring additional factors into play in order to meet the requirements of rising consumption, growing demand for conventional fuels and increasing dependence on imports. Besides the technology, boiler size, efficiency, age and environmental performance will determine the necessities of the coal‐fired power sector in each country. Depending on the case, lifetime extension measures in operating coal‐fired power plants or clean coal technologies can play an important role towards the energy sector restructuring. Low efficiency values in the non‐EU coal‐fired units and heavily aged power plants in EU countries will certainly affect decisions in favour of upgrading or reconstruction. The overall increase of efficiency, the reduction of harmful emissions from generating processes and the co‐combustion of coal with biomass and wastes for generating purposes indicate that coal can be cleaner and more efficient. Additionally, plenty of rehabilitation projects based on CCT applications, have already been carried out or are under progress in the EU energy sector. The proclamations of the countries' energy policies in the coming decades, includes integrated renovation concepts of the coal‐fired power sector. Further to the natural gas penetration in the electricity generation and CO2 sequestration and underground storage, the implementation of CCT projects will strongly contribute to the reduction of CO2 emissions in the European Union, according to the targets set in the Kyoto protocol. In consequence, clean coal technologies can open up new markets not only in the EU member candidate states, but also in other parts of the world. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions’ reduction potential of wind power under different circumstances.  相似文献   

20.
An experimental study is performed to determine the performance of a ground source heat pump (GSHP) system in the heating mode in the city of Erzurum, Turkey. The GSHP system using R‐134a as refrigerant has a single U‐tube ground heat exchanger (GHE) made of polyethylene pipe with a 16 mm inside diameter. The GHE was placed in a vertical borehole with 55 m depth and 203.2 mm diameter. The average coefficients of performance (COP) of the GSHP system and heat pump in heating mode are calculated as 2.09 and 2.57, respectively. The heat extraction rate per meter of the borehole is determined as 33.60 W m?1. Considering the current gas and electric prices in Erzurum city, the equivalent COP of the GSHP system should be 2.92 for the same energy cost comparing with natural gas. The virgin ground in Erzurum basin has high permeability and low thermal conductivity. In order to improve the thermal efficiency of GHE and thus improve COP of a GSHP in the basin, the borehole should be backfilled with sand as low‐cost backfill material and a 1 to 2 m thick surface plug of clay should be inserted. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号