首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two concepts of buffer energy and energy factor for switched‐mode power converters are proposed and examined. They can describe the nonactive power as well as predict and evaluate the performance of DC–DC converters. The concepts can also find usage in both DC and AC systems. The energy factors of six basic topologies of DC–DC converter have been studied, and they can be used to compare the performance of different topologies. It can be shown that both buffer energy and energy factor provide an alternative understanding of the energy processes in DC–DC converters. Experimental results demonstrate that energy factors and buffer energy can be measured. The measured results for some basic converters are consistent with the theoretical values. Buffer energy, energy factor, and their related concepts proposed in this article have promising application in the design of DC–DC converters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes a bidirectional isolated DC/DC converter considered as a core circuit for next‐generation 3.3‐kV/6.6‐kV high‐power‐density power conversion systems. The DC/DC converter is intended to use power switching devices based on SiC and/or GaN, which will be available on the market in the near future. A 350‐V, 10‐kW, and 20‐kHz DC/DC converter is designed, constructed, and tested in this paper. It consists of two single‐phase full‐bridge converters with the latest trench‐gate Si‐IGBTs and a 20‐kHz transformer with a nano‐crystalline soft‐magnetic material core and litz wires. The transformer plays an essential role in achieving galvanic isolation between the two full‐bridge converters. The overall efficiency from the DC‐input to DC‐output terminals is accurately measured to be as high as 97%, excluding gate drive circuit and control circuit losses from the whole loss. Moreover, loss analysis is carried out to estimate effectiveness in using SiC‐based power switching devices. The loss analysis clarifies that the use of SiC‐based power devices may bring a significant reduction in conducting and switching losses to the DC/DC converter. As a result, the overall efficiency may reach 99% or higher. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(2): 75–83, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20505  相似文献   

3.
吴克芬 《中国电力》2004,37(4):49-52
华中与华北联网是全国联网南北互供的主通道之一,是全国北部电网与中部电网的重要联网工程。经过系统论证,华中华北联网宜采用先交流,后过渡到直流背靠背的方案。安阳变电所是华中华北联网工程中的关键变电站,其电气接线方案、配电装置、站用电接线等既要满足近期的联网要求,又要适应远期直流背靠背换流站的要求。因此,安阳变过渡方案的研究对于联网工程显得尤为重要。文中对安阳变电站的过渡方案进行了深入细致的研究,提出经过优化的过渡方案,能更好地适应华中华北联网先交流、后直流的分步实施要求。  相似文献   

4.
This paper presents the parallel operation control of a modular AC to DC converter via a serial communication bus. In the proposed system, multiple AC to DC converters are parallel‐connected at the output end for load current sharing. Each module of the AC to DC converter is controlled by its individual microcontroller. The microcontroller of each module is employed for the voltage control loop and communicates with the microcontrollers of the other converter modules. The RS485 serial communication is used to transmit information among the controllers, which checks the number of the converter module for calculating the input inductor current command of each converter module. Moreover, the clock signal is used for synchronization to prevent data collision on the serial communication bus. The proposed parallel operation control provides fast response when the converter module connects or disconnects according to the required power. The performance evaluation of the proposed system is conducted by simulation and experimental verification on two parallel isolated CUK converters. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

5.
为实现超导磁储能系统(SMES)的大规模可扩展式应用,提高控制系统的动态性能和鲁棒性,改进级联型SMES变流器的电路拓扑,并设计基于无源控制器的总分式功率控制策略。采用二阶广义积分构造虚拟轴,实现单相电路的坐标变换;证明了无源系统反馈互联后仍保持端口受控哈密尔顿模型结构的特征,分别在交、直流侧设计控制策略,降低了控制设计的复杂度;提出总分式功率控制策略,实现系统并网总功率和各级联模块分功率的独立控制;分别在交、直流侧设计无源控制器,提高了系统控制的动态性能和稳定性。仿真分析验证了模块化级联型SMES变流器及其总分式功率无源控制策略的有效性。系统具备模块化特征,可实现灵活扩展以及各超导磁体功率的独立控制,并具有更快的响应速度、更小的超调量和更好的并网电流质量。  相似文献   

6.
An application of the chain link converter (CLC) system, which consists of multiple single‐phase voltage source converters (VSCs) connected in parallel or series, is studied as interconnection systems. In a CLC‐high voltage direct current transmission (HVDC) system, single‐phase converters must be connected in series on the DC side to make the DC voltage high, and the DC voltage of each converter must be controlled to the same value to get an appropriate capacity. This paper describes a DC voltage balancing control (DVBC) method between series converters. Simulations and simulator tests in steady states and in transient states were carried out to confirm behaviors of the CLC‐HVDC system. Those results confirmed the viability of CLC applications to interconnection systems. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

7.
A methodology for realizing a higher‐power‐density DC‐DC converter has been proposed for a power unit installed in a 380‐V DC distribution system. The possibility of the converter design will be strengthened by using the series–parallel connection topology for isolated DC‐DC converters. A converter prototype with a power density of 10 W/cm3 has been fabricated, and the feasibility of the converter design has been confirmed experimentally. This result contributes to the realization of a highly efficient and highly space‐saving 380‐V DC distribution system. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(3): 51–62, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22494  相似文献   

8.
Recent progress in power electronics technology makes it possible to consider applying self‐commutated converters using gate turn‐off thyristors (GTOs) to HVDC transmission systems. Since the self‐commutated converter can be operated stably without depending on ac‐side voltage, the magnitude and the phase angle of the converter output voltage can be controlled independently. Therefore, this type of converter will improve voltage stability at its ac side. On the other hand, shaft torsional oscillation of a thermal power plant caused by the interaction between the shaft‐generator system and the control system of the self‐commutated converter is still an open problem. In this paper, a linearized model for eigenvalue analysis of a power system, including HVDC interconnection with self‐commutated converters, is described to analyze the effect of the self‐commutated converter on the shaft torsional oscillation of a thermal power plant. Then, numerical results from the eigenvalue analysis of the shaft torsional oscillation are presented. Results obtained by the frequency response method are also reported. The numerical results make it clear that parameter regions of DC‐AVR and ACR control systems of self‐commutated converters exist where the shaft torsional oscillation may be caused. © 1999 Scripta Technica, Electr Eng Jpn, 128(4): 25–37, 1999  相似文献   

9.
This paper deals with a 6.6‐kV transformerless STATCOM cascading multiple single‐phase H‐bridge PWM converters in each phase. The AC voltage of the STATCOM is almost sinusoidal, so that it requires no harmonic filter. Each converter is equipped with a capacitor and a voltage sensor on the DC side, which are electrically isolated from each other. The STATCOM has the capability of self‐starting and voltage‐balancing without any external power supply or equipment. Experiments using a three‐phase 200‐V, 10‐kVA laboratory system, along with computer simulations, are carried out to confirm the viability and effectiveness of the STATCOM. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 170(1): 55–64, 2010; Published online in Wiley InterScience ( www.interscience.wiley. com ). DOI 10.1002/eej.20822  相似文献   

10.
对于交流配电网中的柔性直流互联装置,当功率方向变化时,负阻抗会随之在装置内定功率控制换流器的直流侧和交流侧进行转移,降低了系统稳定性.针对此问题,提出了一种阻抗协同重塑控制策略.首先,介绍了配电网中柔性直流互联装置的结构;其次,分别建立了装置内两侧换流器多个端口阻抗在功率双向传输下的小信号模型,探究其阻抗特性;然后,对所提控制策略的工作原理进行了分析,且对重塑后的阻抗进行了建模,对比分析了阻抗重塑前后系统的稳定性;最后,通过MATLAB/Simulink仿真模型和实验平台对所提控制策略的有效性进行了仿真和实验验证,结果表明所提方法通过协同作用可将直流侧和交流侧的负阻抗均重塑为正阻抗,从而能同时改善换流器两侧的稳定性.  相似文献   

11.
The matrix converter is a three‐phase AC‐to‐AC direct converter without any energy storage requirement such as DC link capacitors. However, the matrix converter has some practical problems such as the necessity for bidirectional power devices, necessity for special commutation sequence, and complexity of the control method. Thus, there are no practical systems in which matrix converters are used. In this paper, the control strategy for matrix converters with basic configuration is investigated so as to realize practical matrix converters. First, the necessity of the phase detector for the input voltage and the output current sensor is pointed out from the viewpoint of realization of the basic operation. With these sensors required in the basic configuration, the instantaneous control of the output current is realized. It is also pointed out that three‐phase switching is effective in improving the input current waveforms. Some methods for implementation of three‐phase switching are proposed. The effectiveness of the proposed control methods is confirmed by some experimental results employing a test system. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 151(4): 55–64, 2005; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/eej.20031  相似文献   

12.
在交直流混合微网中,双向接口变换器是连接交流子网和直流子网的桥梁,对系统的安全稳定运行和功率的合理分配起着举足轻重的作用。目前,双向下垂控制方法广泛用于双向接口变换器的控制中,它是通过检测直流母线侧电压和交流母线侧频率来反映直流子网和交流子网的功率需求,进而控制功率的流动。然而,这种方法会使变换器输出的电压和频率存在偏差,同时,在实际中,每个变换器的参数和输出阻抗也不会完全相同,这也会造成功率在并联变换器之间分配不精确。为了解决以上问题,以双向下垂控制为基础,提出了小交流信号注入的新型二次控制方法,在该方法中小交流信号在并联的各变换器之间如同一种通讯信号,其频率和接口变换器输出基波电压的下垂偏置成下垂关系。该方法可以使变换器输出的电压和频率恢复到额定值,同时,可以使并联变换器之间的功率精确分配。matlab/simulink仿真结果验证了所提控制方法的有效性。  相似文献   

13.
The two‐switch flyback DC–DC converter is an extended version of the conventional single‐switch flyback converter. An additional switch and two clamping diodes serve as a simple, but an effective way to limit the switch overvoltages, which occur in the conventional single‐switch flyback converter due to the ringing of the resonant circuit formed by the transformer leakage inductance and the transistor output capacitance. The clamping diodes in the two‐switch flyback topology clamp the maximum voltage across each switch equal to the DC input voltage. This paper presents a detailed analysis and design procedure of the diode‐clamped two‐switch flyback converter operated in discontinuous‐conduction mode (DCM). A comparison of power losses of the two‐switch and the single‐switch flyback converters is given. The two‐switch flyback converter was bread‐boarded to validate the theoretical analysis. Experimental results from a 20‐V/30‐W, 100‐kHz laboratory prototype verified that the maximum switch voltage is limited to the DC input voltage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Doubly fed induction generator (DFIG) is widely used in wind energy generation systems due to its cost‐effective, partially rated back‐to‐back power converters, variable rotor speed operation, and maximum wind power capture. The conventional design assumes balanced grid voltage and utilizes power protection for the power converters. The DFIG wind turbine is naturally one of the major components in distributed generations of the smart grid system. However, newly developed smart grid system is rich in unbalanced loads. This paper summarizes the limiter settings of controllers and explores the nonlinear behaviors of the DFIG‐based wind power generation system with unbalanced loads. The generator rotor speed and an unbalanced load resistance are chosen as variation parameters. An emerging low‐frequency linear‐modulated oscillation at line second harmonic frequency with DC drifting is identified on the DC link voltage of the back‐to‐back power converters. In terms of second harmonic and the usually reported hazardous low‐frequency oscillation, the saturation nonlinearity and over‐modulation of the back‐to‐back power converter and its power flow are investigated and analyzed. The built‐in detailed model of the DFIG wind energy generation system in Matlab with SimPowerSystems library is used in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The two‐switch flyback DC‐DC converter is an extended version of the conventional single‐switch flyback converter. An additional switch and two clamping diodes serve as a simple, but an effective way to limit the switch overvoltages, which occur in the conventional single‐switch flyback converter due to the ringing of the resonant circuit formed by the transformer leakage inductance and the transistor output capacitance. The clamping diodes in the two‐switch flyback topology clamp the maximum voltage across each switch equal to the DC input voltage. This paper presents a detailed steady‐state analysis and design procedure of the diode‐clamped two‐switch flyback converter operated in continuous‐conduction mode (CCM). The power loss in each component of the two‐switch flyback converter is compared with those of the single‐switch flyback converters with and without RCD clamp, and is presented in a tabular form. The two‐switch flyback converter was bread‐boarded to validate the theoretical analysis. Experimental results from a 10 V/30 W, 100 kHz laboratory prototype verified that the maximum switch voltage is limited to the DC input voltage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Power factor correction converters are power electronics circuits used as AC‐DC power supplies. These systems are well known to exhibit nonlinear phenomena such as subharmonic oscillations and chaotic regimes. These undesirable behaviors increase the THD and therefore can jeopardize enormously the system performances. In this paper, time delay feedback control is applied to stabilize a two‐stage power factor correction AC‐DC converter when it exhibits these instabilities under traditional controllers. This control technique introduces many advantages to the most and widely used average current mode control through widening the stability domain of the system. By appropriately selecting the time delay feedback gain and the time delay period, the undesirable subharmonic components are eliminated, whereas the desired ones remain unchanged. A harmonic balance approach is used for studying the dynamics of the system under the new control scheme and to obtain the stabilization domain. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
无通信互联线储能系统的直流母线协调控制策略   总被引:1,自引:1,他引:0  
针对无通信互联线的储能系统如何在不增加系统成本和复杂度的前提下维持直流母线功率平衡及电压稳定,提出了一种直流母线协调控制策略,DC/AC变流器采用定直流电压或定交流电压控制,两台DC/DC变换器采用包含电池充放电控制的改进型二阶直流电压偏差控制。通过对系统典型工况的分析,说明了系统中各个装置是如何协调工作的。搭建了微网实验平台对所提出的控制策略进行了实验验证,实验结果证明了该控制策略的有效性和实用性。  相似文献   

18.
19.
This paper presents the results of experimental study on the performance of a Unified Power Flow Controller (UPFC), one of the FACTS (Flexible AC Transmission Systems) controllers. A laboratory‐scale UPFC was manufactured and installed on a laboratory electric power system to investigate its multifunctional capabilities as a power flow controller. The UPFC consists of two 4.5‐kVA, 200‐V back‐to‐back voltage‐sourced converters, labeled “Converter 1” and “Converter 2,” operated from a common DC link provided by a DC storage capacitor of 380 V. It can provide independent control of both the real and reactive power flow in the line. Tests were performed to examine the capabilities of the UPFC, under one‐machine connected to an infinite‐bus system. Steady‐state responses under various kinds of operating conditions were measured and analyzed. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 161(2): 8– 15, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20538  相似文献   

20.
多端直流输电系统中的直流功率调制技术   总被引:2,自引:2,他引:0  
与常规的双端直流输电系统相比,基于直流功率调制技术的多端直流输电系统能更灵活地向所连接的交流系统提供快速的紧急功率支持,改善交流系统的稳定性。文章对其中一端为弱交流系统的4端直流输电系统运用PSCAD/ EMTDC仿真软件研究了多端直流输电系统的功率调制技术,提出了该系统的仿真模型及其复合控制策略。仿真结果表明,所连接交流系统的强度、各换流站的控制策略和直流系统电流平衡原则的选取会极大地影响直流功率调制的性能,多端直流输电系统比常规的双端直流输电系统能更灵活地运用直流功率调制技术,进而有效地提高所连接交流系统的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号