首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(10):1499-1504
The sorption of Sr2+ ions from aqueous solutions on magnetically modified fodder yeast (Kluyveromyces fragilis) cells and their subsequent desorption were studied. The Sr2+ sorption increased with increasing pH and reached a plateau between pH 4.0 and 7.0. The changes of temperature slightly influenced the sorption process. The sorption values were 19.5 mg g?1 and 53.5 mg g?1 for 10 mg L?1 and 40 mg L?1 Sr2+ solutions respectively after 20 min incubation at a pH higher than 4. The Langmuir isotherm was successfully used to fit experimental data; the maximum adsorption capacity was 140.8 mg g?1 under optimal conditions. The adsorbed Sr2+ ions can be desorbed with nitric acid (0.1 mol L?1).  相似文献   

2.
BACKGROUND: The bioconversion of whey into ethanol by immobilized Kluyveromyces marxianus in packed‐bed and fluidized bioreactors is described. Both batch and continuous cultures were analyzed using three different strains of K. marxianus and the effect of the operating mode, temperature, and dilution rates (D) were investigated. RESULTS: All immobilized strains of K. marxianus (CBS 6556, CCT 4086, and CCT 2653) produced similar high yields of ethanol (0.44 ± 0.01 g EtOH g?1 sugar). Significant variations of conversion efficiencies (66.1 to 83.3%) and ethanol productivities (0.78 to 0.96 g L?1 h?1) were observed in the experiments with strain K. marxianus CBS 6556 at different temperatures. High yields of ethanol were obtained in fluidized and packed‐bed bioreactors continuous cultures at different D (0.1 to 0.3 h?1), with the highest productivity (3.5 g L?1 h?1) observed for D = 0.3 h?1 in the fluidized bioreactor (87% of the maximal theoretical conversion), whereas the highest ethanol concentration in the streaming effluent (28 g L?1) was obtained for D = 0.1 h?1. Electronic micrographs of the gel beads showed efficient cell immobilization. CONCLUSION: Batch and continuous cultivations of immobilized K. marxianus in fluidized and packed‐bed bioreactors enable high yields and productivities of ethanol from whey. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Over the past several decades methyl tert‐butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV‐visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert‐butyl formate and tert‐butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L?1. The first‐order rate constants for degradation of MTBE were estimated to be 0.183–0.022 min?1 as the concentration increased from 10 to 500 mg L?1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L?1 MTBE complete mineralization was obtained after 100 min under UV‐visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV‐visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE‐contaminated waters. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Biosorption of heavy metals from aqueous solution by modified activated carbon with Phanerochaete chrysosporium immobilised in Ca‐alginate beads was investigated using a batch system and comparison of linear and nonlinear methods. RESULTS: The amount of Cu(II), Zn(II) and Pb(II) ion sorption by the beads was as follows: activated carbon with P. chrysosporium immobilised in Ca‐alginate beads (ACFCA) (193.4, 181.8, 136.6 mg g?1) > activated carbon immobilised in Ca‐alginate beads (ACCA) (174.8, 162.0, 130.7 mg g?1) > P. chrysosporium (F) (148.8, 125.6, 120.4 mg g?1) > activated carbon (AC) (138.8, 112.3, 109.3 mg g?1) > plain Ca‐alginate beads (PCA) (125.4, 105.2, 98.2 mg g?1). The widely used Langmuir and Freundlich isotherm models were utilised to describe the biosorption equilibrium process. CONCLUSION: The results of this study suggest that the immobilisation of modified activated carbon with P. chrysosporium in Ca‐alginate beads is suitable for a batch system. The isotherm parameters were estimated using linear and nonlinear regression analyses. The surface charge density of the biosorbents varied with the pH of the medium; the maximum biosorption of heavy metal ions on the biosorbents was obtained when the pH was between 5.6 and 7.4. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
Silica gel has been modified by silylation with 3‐mercaptopropyltrimethoxysilane followed by graft polymerization of dimethylacrylamide and (N,N‐bis‐carboxymethyl)amino‐3‐allylglycerol‐co‐dimethylacrylamide, synthesized via the reaction of allyl glycidyl ether with iminodiacetic acid. The sorbent, poly(AGE/IDA‐co‐DMAA)‐grafted silica gel, has been characterized by FTIR, elemental analysis, thermogravimetric analysis (TGA), FT‐Raman, and scanning electron microscopy and studied for the preconcentration and determination of trace amounts of Cu(II) ion in environmental water samples. The optimum pH value for quantitative sorption of Cu(II) in batch mode was 5.5 and desorption was achieved, using 0.5 mol L?1 nitric acid. The sorption capacity of functionalized sorbent is 32.3 mg g?1. The chelating sorbent was reused for 15 sorption–desorption cycles without any significant change in sorption capacity. The profile of copper uptake by the sorbent reflected good accessibility of the chelating sites in the poly(AGE/IDA‐co‐DMAA)‐grafted silica gel. Scatchard analysis demonstrated homogeneous nature of binding sites. The equilibrium adsorption data of Cu(II) on modified sorbent were analyzed by Langmuir, Freundlich, Temkin, and Redlich–Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.0665, 4.26, and 8.34, respectively, at pH 5.5 and 20°C. Adsorption isotherms were analyzed at different temperatures to obtain free energy, enthalpy, and entropy of adsorption. The method was applied for Cu(II) determination in sea water samples. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
BACKGROUND: Naphthenic acids are carboxylic acid compounds of oil sands wastewaters that contribute to aquatic toxicity. Biodegradation kinetics of an individual naphthenic acid compound in two types of continuous‐flow bioreactors were investigated as a means of improving remediation strategies for these compounds. RESULTS: This study evaluates the kinetics of biodegradation of trans‐4‐methy‐1‐cyclohexane carboxylic acid (trans‐4MCHCA) using two bioreactor systems and a microbial culture developed in previous work. Using a feed concentration of 500 mg L?1 the biodegradation rate of trans‐4MCHCA in the immobilized cell bioreactor was almost two orders of magnitude higher than that in a continuously stirred tank bioreactor. The maximum reaction rates of 230 mg (L d)?1 at a residence time of 1.6 d (40 h) and 22 000 mg (L d)?1 at a residence time of 2.6 h were observed in the continuously stirred tank and immobilized cell bioreactors, respectively. In a second immobilized cell system operating with a feed concentration of 250 mg L?1, a comparable maximum reaction rate (21 800 mg (L d)?1) was achieved at a residence time of 1.0 h. CONCLUSION: The use of immobilized cell bioreactors can enhance the biodegradation rate of naphthenic acid compounds by two orders of magnitude. Further, biodegradation greatly reduces the toxicity of the effluent wastewater. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
An affinity dye ligand, Cibacron Blue F3GA, was covalently attached onto magnetic poly(2‐hydroxyethyl methacrylate) (mPHEMA) beads for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. The mPHEMA beads, in the size range of 80 to 120 µm, were prepared by a modified suspension technique. Cibacron Blue F3GA molecules were incorporated on to the mPHEMA beads. The maximum amount of Cibacron Blue F3GA attachment was obtained as 68.3 µmol g?1. HSA adsorption onto unmodified and Cibacron Blue F3GA‐attached mPHEMA beads was investigated batchwise. The non‐specific adsorption of HSA was very low (1.8 mg g?1). Cibacron Blue F3GA attachment onto the beads significantly increased the HSA adsorption (94.5 mg g?1). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (138.3 mg HSA g?1). Desorption of HSA from Cibacron Blue F3GA‐attached mPHEMA beads was obtained by using 0.1 M Tris/HCl buffer containing 0.5 M NaSCN. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to re‐use Cibacron Blue F3GA‐attached mPHEMA beads without any significant decreases in their adsorption capacities. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Functionalised SBA‐15 mesoporous silica with polyamidoamine groups (PAMAM‐SBA‐15) was successfully prepared with the structure characterised by X‐ray diffraction, nitrogen adsorption–desorption, Fourier transform infrared spectra and thermogravimetric analysis. PAMAM‐SBA‐15 was applied as adsorbent for Cu(II), Pb(II) and Cd(II) ions removal from aqueous solution. The effects of the solution pH, adsorbent dosage and metal ion concentration were studied under the batch mode. The Langmuir model was fitted favourably to the experimental data. The maximum sorptive capacities were determined to be 1.74 mmol g?1 for Cu(II), 1.16 mmol g?1 for Pb(II) and 0.97 mmol g?1 for Cd(II). The overall sorption process was fast and its kinetics was fitted well to a pseudo‐first‐order kinetic model. The mean free energy of sorption, calculated from the Dubinin–Radushkevich isotherm, indicated that the sorption of lead and copper, with E > 16 kJ mol?1, followed the sorption mechanism by particle diffusion. The adsorbent could be regenerated three times without significant varying its sorption capacity. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. The breakthrough data gave a good fit to the Thomas model. Maximum sorption capacity of 1.6, 1.3 and 1.0 mmol g?1 were found for Cu(II), Pb(II) and Cd(II), respectively, at flow rate of 0.4 mL min?1 and bed height of 8 cm, which corresponds to 83%, 75% and 73% of metallic ion removal, respectively, which very close to the value determined in the batch process. Bed depth service time model could describe the breakthrough data from the column experiments properly. © 2012 Canadian Society for Chemical Engineering  相似文献   

9.
The mono‐dispersed macroporous Molecularly Imprinted microspheres (MIPMs) selective for Diethylhexyl Phthalate (DEHP) were synthesized by Pickering emulsion polymerization. Silica nanoparticles were stabilizers in forming a stable oil‐in‐water emulsion, while the polymeric system was prepared by radical polymerization using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross‐linker. The results of scanning electron microscopy and nitrogen adsorption desorption measurement indicated that the obtained polymer microspheres had regularly porous structure and narrowly diameter distribution (100 nm), besides the specific surface area (SBET) was 452 m2 g?1, pore volume was 9.685 cm3 g?1, and pore diameter was 5.089 nm. The equilibrium adsorption capacity of MIPs was 1.75 mg g?1 at 298 K. Good selectivity for DEHP in another two kinds of analogies (DBP and DAP) was demonstrated with high selectivity coefficients, respectively 17.753 and 19.450. In the end, DEHP‐MIP was used as packing of solid‐phase extraction to form an sensitive analytical method in extraction and enrichment DEHP in bottled water samples with the limits of detection of 1.7–2.5 μg L?1.The recoveries at three spiking level (0.05, 0.1, and 1 mg L?1) were varied between at 97.5 and 103.1% with RSD values below 3.5. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43484.  相似文献   

10.
The effects of aeration rate and agitation speed on ubiquinone‐10 (CoQ10) submerged fermentation in a stirred‐tank reactor using Pseudomonas diminuta NCIM 2865 were investigated. CoQ10 production, biomass formation, glycerol utilization, and volumetric mass transfer coefficient (kLa) were affected by both aeration and agitation. An agitation speed of 400 rpm and aeration rate of 0.5 vvm supported the maximum production (38.56 mg L–1) of CoQ10 during batch fermentation. The fermentation run supporting maximum production had an kLa of 27.07 h–1 with the highest specific productivity and CoQ10 yield of 0.064 mg g–1h–1 and 0.96 mg g–1 glycerol, respectively. Fermentation kinetics performed under optimum aeration and agitation showed the growth‐associated constant (a = 5.067 mg g–1) to be higher than the nongrowth‐associated constant (β = 0.0242 mg g–1h–1). These results were successfully utilized for the development of fed‐batch fermentation, which increased the CoQ10 production from 38.56 mg L–1 to 42.85 mg L–1.  相似文献   

11.
Macroporous copolymers of poly[(glycidyl methacrylate)‐co ‐(ethylene glycol dimethacrylate)] (PGME ) with various crosslinker (ethylene glycol dimethacrylate) concentrations and porosity parameters and additionally functionalized with hexamethylene diamine (PGME‐HD ) were tested as potential Cr(VI ) oxyanion sorbents from aqueous solutions. Kinetics of Cr(VI ) sorption was investigated in the temperature range 298–343 K and the results were fitted to chemical reaction and particle diffusion models. The Cr(VI ) sorption obeys the pseudo‐second‐order model with definite influence of pore diffusion. A temperature rise promotes chromium removal, with a maximum experimental uptake capacity of 4.21 mmol g?1 at 343 K for the sample with the highest amino group concentration. Equilibrium data were analysed with Langmuir, Freundlich and Temkin adsorption isotherm models. Thermodynamic parameters, i.e. Gibbs free energy (ΔG 0), enthalpy (ΔH 0) and entropy change (ΔS 0) and activation energy of sorption (E a), were calculated. The Cr(VI) adsorption onto PGME‐HD was found to be spontaneous and endothermic, with increased randomness in the system. Desorption experiments show that chromium anion sorption was reversible and the PGME‐HD sample GMA 60 HD was easily regenerated with 0.1 mol L?1 NaOH up to 90% recovery in the fourth sorption/desorption cycle. In the fifth cycle, a substantial sorption loss of 37% was observed. © 2016 Society of Chemical Industry  相似文献   

12.
《分离科学与技术》2012,47(13):2003-2015
Two chelating ion exchangers possessing bis(2-pyridylmethyl)amine functional groups also known as bispicolylamine Dowex M4195, Lewatit® MonoPlus TP 220 were used for the selective removal of Cu(II) ions from acidic streams. The resin was characterized by CHNS elementary analysis, surface area, pore size, and volume analysis. After cutting by ultramicrotome, scans using electron microscope and optical profiler were recorded. For the first time the interiors of these resins after the sorption process were shown. Their superior binding affinities for Cu(II) was confirmed even under high acidities. Various physiochemical parameters like solution pH, ion exchange dose, presence of chloride, and sulfate ions in the system were studied in order to determine sorption capacity and kinetic parameters. The most effective chelating ion exchanger proved to be Lewatit® MonoPlus TP 220. Cu(II) ions sorption was affected by the presence of sulfate ions in the system. The monolayer sorption capacity (q0) for Lewatit® MonoPlus TP 220 was found to be 50.69 mg g?1 and 86.44 mg g?1 in the presence of chloride ions. The sorption of Cu(II) ions was found to be well represented by the pseudo second-order kinetics. The optimal desorption conditions were found using 1 M H2SO4 and 1 M NH4OH.  相似文献   

13.
The possibility of sorption of technetium‐99 in the form of pertechnetate anion (TcO4?) and the sorption kinetics for removing TcO4? from aqueous solution by chelating polymers based on glycidyl methacrylate (GMA) were investigated. Two samples of macroporous crosslinked poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (PGME), with different amount of the crosslinker (ethylene glycol dimethacrylate, EGDMA), were synthesized by suspension copolymerization and functionalized with diethylene triamine (deta). We propose that nonspecific sorption of pertechnetate anion via electrostatic interactions takes place at the protonated amino groups of macroporous crosslinked copolymer. The results of batch experiments performed at pH 1–14 showed fast sorption kinetics for removing TcO4? by amino‐functionalized PGME‐deta in a wide range of pH, that is, from 1.0 to 9.0. Almost complete removal of TcO4? (91–98%) was reached within 180 min in the stated pH range (1.0–9.0), with the sorption half‐times of under 25 min. The partitioning coefficients of linear adsorption isotherms, with 180‐min equilibrium time, reach the high values of 2130 mL g?1 and 1698 mL g?1 for the two samples of synthesized PGME‐deta. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
BACKGROUND: Because of the lower fluidization energy required and the protection against shock loading and starvation due to their sorption capacity, light adsorbents such as hydrogels could be used as biofilm carrier media in fluidized bed bioreactors for wastewater processing. This work explores the feasibility of a cyclodextrin hydrogel as biomass support to degrade phenol under extremely low‐nitrogen availability and under nitrogen amendments. RESULTS: Phenol removal capacity was low (mean 0.589 kg m?3 day?1) under extreme nitrogen‐limited conditions (mean C:N ratio 3830). A pulsed nitrogen amendment increased the elimination capacity (up to 1.97 kg m?3 day?1) controlling the biofilm thickness. An 8‐h nitrogen pulse had a highly efficient long‐term effect removing 93.5 mg‐C mg?1‐N in 300 h. The continuous nitrogen amendment enhanced the elimination capacity (up to 5.84 kg m?3 day?1) although rapidly increasing the biomass growth. The inhibiting phenol concentration was smaller during the nitrogen‐limited period (below 100 mg L?1) than in the nitrogen‐amendment periods (140 mg L?1). Low liquid velocities were needed to fluidize the bioparticles (less than 3.1 mm s?1) during the entire experimentation. CONCLUSION: This work shows that a fluidized‐bed bioreactor with mixed culture on cyclodextrin‐based particles can be operated for long periods at extreme nitrogen limitation, and that a limited nitrogen supply with periodic pulsed amendments would be adequate for controlling the biofilm thickness. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Polyvinyl alcohol(PVA) bead crosslinked with boric acid has been widely utilized as a microorganism immobilization carrier. However, it has some disadvantages such as drastic cell viability loss, small adsorption capacity and mass transfer limitation. To improve upon these drawbacks, a new method to prepare PVA composite pieces with the addition of activated carbon (AC) and poly‐3‐hydroxybutyrate(PHB) was explored through a combination of freezing/thawing and the boric acid method and by using Tween‐80 to improve the mass transfer performance of hydrophobic organics. m‐Cresol and pyrene were used as representative compounds with benzene ring structures to model hydrophilic and hydrophobic organics in order to test the performance of PVA pieces. The results showed that, compared with the boric acid method alone, a combination of freezing/thawing and the boric acid method led to a decrease in total organic carbon(TOC) loss from 0.315 g g?1 to 0.033 g g?1 and increased the oxygen uptake rate(OUR) of microorganisms from 0.03 mg L?1·min?1 to 0.22 mg L?1 min?1. The m‐cresol equilibrium adsorption amount of the PVA‐SA(sodium alginate)‐PHB‐AC piece was 2.80 times that of the PVA‐SA piece. The diffusion coefficient of pyrene in the PVA‐SA‐PHB‐AC piece increased from 0.53×10?9 m2 min?1 to 2.30×10?9 m2 min?1 with increasing concentrations of Tween‐80 from 1000 mg L?1 to 5000 mg L?1. The PVA‐SA‐PHB‐AC composite carrier demonstrated great scope for immobilizing microorganisms for practical wastewater bio‐treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39837.  相似文献   

16.
Poly(GMA/MMA) beads were synthesized from glycidyl methacrylate (GMA) and methyl methacrylate (MMA) in the presence of a cross‐linker (i.e. ethyleneglycol dimethacrylate) (EGDMA) via suspension polymerization. The epoxy groups of the poly(GMA/MMA) beads were converted into amino groups with either ammonia or 1,6‐diaminohexane (i.e. spacer‐arm). An L ‐histidine ligand was then covalently immobilized on the aminated (poly(GMA/MMA)‐AH) and/or the spacer‐arm attached (poly(GMA/MMA)‐SAH) beads using glutaric dialdehyde as a coupling agent. Both affinity adsorbents were used in human serum albumin (HSA) adsorption/desorption studies under defined pH, ionic strength or temperature conditions in a batch reactor. The spacer‐arm attached affinity adsorbent resulted in an increase in the adsorption capacity to HSA when compared to the aminated counterpart (i.e. poly(GMA/MMA)‐AH). The maximum adsorption capacities of the affinity adsorbents were found to be significantly high, i.e. 43.7 and 80.2 mg g?1 (of the beads), while the affinity constants, evaluated by the Langmuir model, were 3.96 × 10?7 and 9.53 × 10?7 mol L?1 for poly(GMA/MMA)‐AH and poly(GMA/MMA)‐SAH, respectively. The adsorption capacities of the affinity adsorbents were decreased for HSA by increasing the ionic strength, adjusted with NaCl. The adsorption kinetics of HSA were analysed by using pseudo‐first and pseudo‐second‐order equations. The second‐order equation fitted well with the experimental data. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
The objective of this research was to characterize the performance of granulated activated carbon (GAC) as a carrier for Pseudomonas ADP in a non‐sterile continuous fluidized bed reactor for atrazine degradation under anoxic conditions. The GAC was compared with two non‐adsorbing carriers: non‐adsorbing carbon particles (‘Baker product’) having the same surface area available for biofilm growth as the GAC, and sintered glass beads. The initial atrazine degradation efficiency was higher than 90% in the reactors with the non‐adsorbing carriers, but deteriorated to 20% with time due to contamination by foreign denitrifying bacteria. In contrast, no deterioration was observed in the biological granulated activated carbon (BGAC) reactor. A maximal atrazine volumetric and specific degradation rate of 0.820 ± 0.052 g atrazine dm?3 day?1 and 1.7 ± 0.4 g atrazine g?1 protein day?1 respectively were observed in the BGAC reactor. Concurrent atrazine biodegradation and desorption from the carrier was shown and an effluent concentration of 0.002 mg dm?3 (below the EPA standard) was achieved in the BGAC reactor. The advantages of the BGAC reactor over the non‐adsorbing carrier reactors can probably be explained by the adsorption–desorption mechanism providing favorable microenvironmental conditions for atrazine–degrading bacteria. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Pb(II) is common in both waste‐waters and gas emissions. In developing countries, public health problems have been reported concerning Pb(II) pollution, so that stringent measures are required to deal with it. MAJOR RESULTS: The adsorption and desorption behaviour of Pb(II) has been investigated on a natural Chinese kaolin. Several factors, including initial concentration, pH, equilibration time, dosage and temperature correlated positively with Pb(II) adsorption. The Pb(II) adsorption capacity of natural kaolin was 165.117 mg g?1. A kinetic study shows that Pb(II) adsorption on purified kaolin equilibrates within 35 min. The enthalpy changes of Pb(II) adsorption on purified kaolin were 63.683, 20.488 and 21.371 kJ mol?1 with entropy changes 262.250, 112.210 and 105.120 J mol?1 K?1 for solutions containing 50, 100 and 200 mg L?1 Pb(II) respectively, indicating an endothermic and spontaneous adsorption process. The desorption of Pb(II) from kaolin was difficult with more than 85% Pb(II) removal. Based on X‐ray diffraction (XRD) analysis, the Pb(II) adsorption on natural and purified kaolin was attributed mainly to the magnesite component and complexation with the mineral surface. CONCLUSIONS: Natural kaolin exhibits a satisfactory performance for adsorption of Pb(II) from aqueous solution. The optimum conditions for adsorption were: ionic strength = 0.01 mol L?1; pH ≥ 7.2; dosage = 10 g L?1; temperature = 25 °C; duration ≥ 16 h (Ci = 80 mg L?1); and the optimum conditions for desorption were ionic strength = 0.1 mol L?1 and pH ≤ 5.0. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
A straightforward strategy is described to synthesize poly(?‐caprolactone)‐graft‐poly(N‐isopropylacrylamide) (PCL‐g‐PNIPAAm) amphiphilic graft copolymers consisting of potentially biodegradable polyester backbones and thermoresponsive grafting chains. PCL with pendent chlorides was prepared by ring‐opening polymerization, followed by conversion of the pendent chlorides to azides. Alkyne‐terminated PNIPAAm was synthesized by atom transfer radial polymerization. Then, the alkyne end‐functionalized PNIPAAm was grafted onto the PCL backbone by a copper‐catalyzed azide–alkyne cycloaddition. PCL‐g‐PNIPAAm graft copolymers self‐assembled into spherical micelles comprised of PCL cores and PNIPAAm coronas. The critical micelle concentrations of the graft copolymers were in the range 7.8–18.2 mg L?1, depending on copolymer composition. Mean hydrodynamic diameters of micelles were in the range 65–135 nm, which increased as the length of grafting chains grew. PCL‐g‐PNIPAAm micelles were thermosensitive and aggregated upon heating. © 2014 Society of Chemical Industry  相似文献   

20.
Haemophilus influenzae b (Hib), an encapsulated Gram‐negative cocco‐bacillus, is one of the most common agents of meningitis worldwide. The capsular polysaccharide conjugated to a carrier protein is the antigen of the vaccine against Hib. An optimized cultivation process that could lead to an increase in the polysaccharide production would be of great interest for mass vaccination programs. The aim of this work was to evaluate different culture conditions in attempt to improve the capsular polysaccharide yield. Hib was cultivated in a bioreactor with modified soy‐peptone and yeast‐extract (MP) medium and optimal hemin and nicotinamide adenine dinucleotide (NAD) concentration in the culture medium was established at 30 mg L?1 and 15 mg L?1, respectively. The batch experiments were carried out as follows: (a) overlay aeration without pH control; (b) air‐sparged with dissolved oxygen tension (DOT) controlled at 10 and 30% air saturation, with and without pH control. The cultures with air‐sparged aeration, without pH control, showed values for the specific production (SPp/x) of 180–190 mg PRP g?1 dry cell weight (DCW) and overall polysaccharide productivity of 22–29 mg L?1 h?1, accounting for an increase of ca 47% over the polysaccharide production with overlay aeration. Batch cultivations with air sparged aeration led to an improvement in the poly(ribosylribitol phosphate) (PRP) production for both conditions (DOT at 10 and 30% air saturation) investigated upon pH control, achieving up to 980 PRP mg L?1. The SPp/x and overall polysaccharide productivity were 280–300 mg PRP g?1 DCW and 45–41 mg L?1h?1, respectively. The best production of capsular polysaccharide was obtained in the modified MP‐medium, with 30 mg L?1 hemin and 15 mg L?1 NAD, upon sparged aeration and pH control. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号