首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of reducing the stencil of the local discontinuous Galerkin method applied to second‐order differential operator is discussed. Heuristic algorithms to minimize the total number of non‐zero blocks of the reduced stiffness matrix are presented and tested on a wide variety of unstructured and structured grids in 2D and 3D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, we consider the local discontinuous Galerkin (LDG) method applied to second‐order elliptic problems arising in the modeling of single‐phase flows in porous media. It has been recently proven that the spectral condition number of the stiffness matrix exhibits an asymptotic behavior of ??(h?2) on structured and unstructured meshes, where h is the mesh size. Thus, efficient preconditioners are mandatory. We present a semi‐algebraic multilevel preconditioner for the LDG method using local Lagrange‐type interpolatory basis functions. We show, numerically, that its performance does not degrade, or at least the number of iterations increases very slowly, as the number of unknowns augments. The preconditioner is tested on problems with high jumps in the coefficients, which is the typical scenario of problems arising in porous media. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a comparison between two high‐order methods. The first one is a high‐order finite volume (FV) discretization on unstructured grids that uses a meshfree method (moving least squares (MLS)) in order to construct a piecewise polynomial reconstruction and evaluate the viscous fluxes. The second method is a discontinuous Galerkin (DG) scheme. Numerical examples of inviscid and viscous flows are presented and the solutions are compared. The accuracy of both methods, for the same grid resolution, is similar, although the DG scheme requires a larger number of degrees of freedom than the FV–MLS method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Proper orthogonal decomposition (POD) allows to compress information by identifying the most energetic modes obtained from a database of snapshots. In this work, POD is used to predict the behavior of compressible flows by means of global and local approaches, which exploit some features of a discontinuous Galerkin spatial discretization. The presented global approach requires the definition of high‐order and low‐order POD bases, which are built from a database of high‐fidelity simulations. Predictions are obtained by performing a cheap low‐order simulation whose solution is projected on the low‐order basis. The projection coefficients are then used for the reconstruction with the high‐order basis. However, the nonlinear behavior related to the advection term of the governing equations makes the use of global POD bases quite problematic. For this reason, a second approach is presented in which an empirical POD basis is defined in each element of the mesh. This local approach is more intrusive with respect to the global approach but it is able to capture better the nonlinearities related to advection. The two approaches are tested and compared on the inviscid compressible flow around a gas‐turbine cascade and on the compressible turbulent flow around a wind turbine airfoil.  相似文献   

5.
Recently, a discontinuous Galerkin method with plane wave basis functions and Lagrange multiplier degrees of freedom was proposed for the efficient solution of Helmholtz problems in the mid‐frequency regime. In this paper, this method is extended to higher‐order elements. Performance results obtained for various two‐dimensional problems highlight the advantages of these elements over classical higher‐order Galerkin elements such as Q2 and Q4 for the discretization of interior and exterior Helmholtz problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
An anisotropic adaptive analysis procedure based on a discontinuous Galerkin finite element discretization and local mesh modification of simplex elements is presented. The procedure is applied to transient two‐ and three‐dimensional problems governed by Euler's equation. A smoothness indicator is used to isolate jump features where an aligned mesh metric field in specified. The mesh metric field in smooth portions of the domain is controlled by a Hessian matrix constructed using a variational procedure to calculate the second derivatives. The transient examples included demonstrate the ability of the mesh modification procedures to effectively track evolving interacting features of general shape as they move through a domain. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This work discusses a discontinuous Galerkin (DG) discretization for two‐phase flows. The fluid interface is represented by a level set, and the DG approximation space is adapted such that jumps and kinks in pressure and velocity fields can be approximated sharply. This adaption of the original DG space, which can be performed ‘on‐the‐fly’ for arbitrary interface shapes, is referred to as extended discontinuous Galerkin. By combining this ansatz with a special quadrature technique, one can regain spectral convergence properties for low‐regularity solutions, which is demonstrated by numerical examples. This work focuses on the aspects of spatial discretization, and special emphasis is devoted on how to overcome problems related to quadrature, small cut cells, and condition number of linear systems. Temporal discretization will be discussed in future works. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a framework for r‐adaptive quasi‐static configurational force (CF) brittle crack propagation, cast within a discontinuous Galerkin (DG) symmetric interior penalty (SIPG) finite element scheme. Cracks are propagated in discrete steps, with a staggered algorithm, along element interfaces, which align themselves with the predicted crack propagation direction. The key novelty of the work is the exploitation of the DG face stiffness terms existing along element interfaces to propagate a crack in a mesh‐independent r‐adaptive quasi‐static fashion, driven by the CF at the crack tip. This adds no new degrees of freedom to the data structure. Additionally, as DG methods have element‐specific degrees of freedom, a geometry‐driven p‐adaptive algorithm is also easily included allowing for more accurate solutions of the CF on a moving crack front. Further, for nondeterminant systems, we introduce an average boundary condition that restrains rigid body motion leading to a determinant system. To the authors' knowledge, this is the first time that such a boundary condition has been described. The proposed formulation is validated against single and multiple crack problems with single‐ and mixed‐mode cracks, demonstrating the predictive capabilities of the method.  相似文献   

9.
Discontinuous Galerkin methods have received considerable attention in recent years for problems in which advection and diffusion terms are present. Several alternatives for treating the diffusion and advective fluxes have been introduced. This report summarizes some of the methods that have been proposed. Several numerical examples are included in the paper. These present discontinuous Galerkin solutions of one‐dimensional problems with a scalar variable. Results are presented for diffusion–reaction problems and advection–diffusion problems. We discuss the performance of various formulations with respect to accuracy as well as stability of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
We present a new method for simulating incompressible immiscible two‐phase flow in porous media. The semi‐implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of freedom is significantly reduced compared to standard interior penalty discontinuous Galerkin methods. Several numerical examples illustrate the accuracy and robustness of the method. These examples include verification of convergence rates by manufactured solutions, common one‐dimensional benchmarks, and realistic discontinuous permeability fields.  相似文献   

11.
A new discontinuous Galerkin method for elliptic problems which is capable of rendering the same set of unknowns in the final system of equations as for the continuous displacement‐based Galerkin method is presented. Those equations are obtained by the assembly of element matrices whose structure in particular cases is also identical to that of the continuous displacement approach. This makes the present formulation easily implementable within the existing commercial computer codes. The proposed approach is named the embedded discontinuous Galerkin method. It is applicable to any system of linear partial differential equations but it is presented here in the context of linear elasticity. An application of the method to linear shell problems is then outlined and numerical results are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We adopt a numerical method to solve Poisson's equation on a fixed grid with embedded boundary conditions, where we put a special focus on the accurate representation of the normal gradient on the boundary. The lack of accuracy in the gradient evaluation on the boundary is a common issue with low‐order embedded boundary methods. Whereas a direct evaluation of the gradient is preferable, one typically uses post‐processing techniques to improve the quality of the gradient. Here, we adopt a new method based on the discontinuous‐Galerkin (DG) finite element method, inspired by the recent work of [A.J. Lew and G.C. Buscaglia. A discontinuous‐Galerkin‐based immersed boundary method. International Journal for Numerical Methods in Engineering, 76:427‐454, 2008]. The method has been enhanced in two aspects: firstly, we approximate the boundary shape locally by higher‐order geometric primitives. Secondly, we employ higher‐order shape functions within intersected elements. These are derived for the various geometric features of the boundary based on analytical solutions of the underlying partial differential equation. The development includes three basic geometric features in two dimensions for the solution of Poisson's equation: a straight boundary, a circular boundary, and a boundary with a discontinuity. We demonstrate the performance of the method via analytical benchmark examples with a smooth circular boundary as well as in the presence of a singularity due to a re‐entrant corner. Results are compared to a low‐order extended finite element method as well as the DG method of [1]. We report improved accuracy of the gradient on the boundary by one order of magnitude, as well as improved convergence rates in the presence of a singular source. In principle, the method can be extended to three dimensions, more complicated boundary shapes, and other partial differential equations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes the application of the so‐called hybridizable discontinuous Galerkin (HDG) method to linear elasticity problems. The method has three significant features. The first is that the only globally coupled degrees of freedom are those of an approximation of the displacement defined solely on the faces of the elements. The corresponding stiffness matrix is symmetric, positive definite, and possesses a block‐wise sparse structure that allows for a very efficient implementation of the method. The second feature is that, when polynomials of degree k are used to approximate the displacement and the stress, both variables converge with the optimal order of k+1 for any k?0. The third feature is that, by using an element‐by‐element post‐processing, a new approximate displacement can be obtained that converges at the order of k+2, whenever k?2. Numerical experiments are provided to compare the performance of the HDG method with that of the continuous Galerkin (CG) method for problems with smooth solutions, and to assess its performance in situations where the CG method is not adequate, that is, when the material is nearly incompressible and when there is a crack. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Poro‐elastic materials are commonly used for passive control of noise and vibration and are key to reducing noise emissions in many engineering applications, including the aerospace, automotive and energy industries. More efficient computational models are required to further optimise the use of such materials. In this paper, we present a discontinuous Galerkin method (DGM) with plane waves for poro‐elastic materials using the Biot theory solved in the frequency domain. This approach offers significant gains in computational efficiency and is simple to implement (costly numerical quadratures of highly oscillatory integrals are not needed). It is shown that the Biot equations can be easily cast as a set of conservation equations suitable for the formulation of the wave‐based DGM. A key contribution is a general formulation of boundary conditions as well as coupling conditions between different propagation media. This is particularly important when modelling porous materials as they are generally coupled with other media, such as the surround fluid or an elastic structure. The validation of the method is described first for a simple wave propagating through a porous material, and then for the scattering of an acoustic wave by a porous cylinder. The accuracy, conditioning and computational cost of the method are assessed, and comparison with the standard finite element method is included. It is found that the benefits of the wave‐based DGM are fully realised for the Biot equations and that the numerical model is able to accurately capture both the oscillations and the rapid attenuation of the waves in the porous material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we introduce an extension of Van Leer's slope limiter for two‐dimensional discontinuous Galerkin (DG) methods on arbitrary unstructured quadrangular or triangular grids. The aim is to construct a non‐oscillatory shock capturing DG method for the approximation of hyperbolic conservative laws without adding excessive numerical dispersion. Unlike some splitting techniques that are limited to linear approximations on rectangular grids, in this work, the solution is approximated by means of piecewise quadratic functions. The main idea of this new reconstructing and limiting technique follows a well‐known approach where local maximum principle regions are defined by enforcing some constraints on the reconstruction of the solution. Numerical comparisons with some existing slope limiters on structured as well as on unstructured meshes show a superior accuracy of our proposed slope limiters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection‐dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time‐integral quantities are considered for scalar outputs and these are shown to superconverge with temporal refinement. Output error estimates are calculated using the adjoint‐weighted residual method, where the unsteady adjoint solution is obtained using a discrete approach with an iterative solver. We investigate the accuracy versus computational cost trade‐off for various approximations of the fine‐space adjoint and find that exact adjoint solutions are accurate but expensive. To reduce the cost, we propose a local temporal reconstruction that takes advantage of superconvergence properties at Radau points, and a spatial reconstruction based on nearest‐neighbor elements. This inexact adjoint yields output error estimates at a computational cost of less than 2.5 times that of the forward problem for the cases tested. The calculated error estimates account for numerical error arising from both the spatial and temporal discretizations, and we present a method for identifying the percentage contributions of each discretization to the output error. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A goal‐oriented algorithm is developed and applied for hp‐adaptive approximations given by the discontinuous Galerkin finite element method for the biharmonic equation. The methodology is based on the dual problem associated with the target functional. We consider three error estimators and analyse their properties as basic tools for the design of the hp‐adaptive algorithm. To improve adaptation, the combination of two different error estimators is used, each one at its best efficiency, to guide the tasks of where and how to adapt the approximation spaces. The performance of the resulting hp‐adaptive schemes is illustrated by numerical experiments for two benchmark problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Several numerical methods using non‐polynomial interpolation have been proposed for wave propagation problems at high frequencies. The common feature of these methods is that in each element, the solution is approximated by a set of local solutions. They can provide very accurate solutions with a much smaller number of degrees of freedom compared to polynomial interpolation. There are however significant differences in the way the matching conditions enforcing the continuity of the solution between elements can be formulated. The similarities and discrepancies between several non‐polynomial numerical methods are discussed in the context of the Helmholtz equation. The present comparison is concerned with the ultra‐weak variational formulation (UWVF), the least‐squares method (LSM) and the discontinuous Galerkin method with numerical flux (DGM). An analysis in terms of Trefftz methods provides an interesting insight into the properties of these methods. Second, the UWVF and the LSM are reformulated in a similar fashion to that of the DGM. This offers a unified framework to understand the properties of several non‐polynomial methods. Numerical results are also presented to put in perspective the relative accuracy of the methods. The numerical accuracies of the methods are compared with the interpolation errors of the wave bases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we present a new approach to simulations on complex‐shaped domains. The method is based on a discontinuous Galerkin (DG) method, using trial and test functions defined on a structured grid. Essential boundary conditions are imposed weakly via the DG formulation. This method offers a discretization where the number of unknowns is independent of the complexity of the domain. We will show numerical computations for an elliptic scalar model problem in ?2 and ?3. Convergence rates for different polynomial degrees are studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Two‐dimensional photonic crystal structures are analyzed by a recently developed hybrid technique combining the finite‐element time‐domain (FETD) method and the finite‐difference time‐domain (FDTD) method. This hybrid FETD/FDTD method uses the discontinuous Galerkin method as framework for domain decomposition. To the best of our knowledge, this is the first hybrid FETD/FDTD method that allows non‐conformal meshes between different FETD and FDTD subdomains. It is also highly parallelizable. These properties are very suitable for the computation of periodic structures with curved surfaces. Numerical examples for the computation of the scattering parameters of two‐dimensional photonic bandgap structures are presented as applications of the hybrid FETD/FDTD method. Numerical results demonstrate the efficiency and accuracy of the proposed hybrid method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号